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ABSTRACT

Search for Sterile Neutrinos Using the MiniBooNE Beam

Michel Sorel

The possibile existence of light sterile neutrinos in Nature is motivated, and the

prospects to extend sterile neutrino searches beyond current limits is substantiated,

using the MiniBooNE neutrino beam and detector at Fermilab. We report on the

neutrino flux predictions for the MiniBooNE experiment, on the characterization

of the charged-current, quasi-elastic interactions of muon neutrinos (νµn → µ−p)

observed, and on the experiment’s sensitivity to sterile neutrinos via muon neutrino

disappearance.
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Chapter 1

Introduction

1.1 Neutrinos and the Weak Interactions: a His-

torical Perspective

The history of the neutrino dates back to the very early stages of the Universe, a

small fraction of a second after the Big Bang, but this elementary particle is known

to mankind only since 1930. That year, W. Pauli postulated the existence of a neu-

tral particle to explain the continuous energy spectrum of electrons in the β-decay

of radioactive nuclei, via (as we know today) n → p + e− + ν̄e, where n, p, e−, ν̄e

indicate a neutron, proton, electron, and electron antineutrino, respectively.

After the discovery of the neutron in 1932 by J. Chadwick [1], E. Fermi coined

the word “neutrino” to describe this “little, neutral particle”, in contrast to the more

massive neutron. In 1932, C. D. Anderson discovered the positron [2], the antiparti-

cle of the electron, confirming the prediction of Dirac’s relativistic theory of quantum

mechanics. In 1934, E. Fermi proposed the first theory of weak interactions [3], suc-

cessfully describing nuclear β-decay processes. This interaction operates at short,

nuclear ranges, and it is termed “weak” in contrast to the nuclear strong interaction,

binding protons and neutrons together in nuclei, which was inferred by J. Chadwick

1
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in 1921. In 1937, E. Majorana first speculated that the hypothetical neutrinos might

behave differently than Dirac particles, and that neutrinos and antineutrinos might

be the same entity [4].

Neutrinos from β-decay were first detected in 1956 by C. Cowan and F. Reines

[5], from the decay of neutron-rich nuclei produced in the fission of heavy elements

at nuclear reactors. Electron antineutrinos were observed via the detection of the

positron emitted in inverse β-decay, ν̄ep → e+n, and the subsequent γ emission from

the neutron capture. The very small interaction rate for this neutrino interaction

measured by Cowan and Reines was in rough agreement with Fermi’s theory, and

confirmed the weak character of neutrino interactions.

After the detection of the neutrino, efforts to try to understand neutrino prop-

erties, in particular its mass and spin, began. In 1956, from an analysis of weak

particle decays available at the time, Lee and Yang concluded that weak interactions

(unlike electromagnetic and strong nuclear interactions) do not conserve parity, or

equivalently that the formalism describing a process mediated by the weak force is

not invariant under a mirror reflection of the physics system under consideration [6].

The year after, C. S. Wu and collaborators unambiguously confirmed parity violation

in weak interactions [7].

The non-conservation of parity led Lee and Yang to formulate, in 1957, a “two-

component theory” of massless neutrinos [8], in which the half-integer spin neutrinos

can only have one possible helicity state, that is only one possible spin orientation

with respect to their momentum direction vector, as opposed to the two helicity

states allowed for the other particles known in nature. The helicity H of the neu-

trino was determined to be left-handed in 1958, by Goldhaber et al. [9], that is

H ≡ ~p · ~S/|~p| = −~/2, where ~p is the three-momentum vector, ~S the neutrino spin.

Parity violation was formally embedded into a new theory of weak interactions, called

the (V-A) theory, in that same year, by E. C.G. Sudarshan, R. E. Marshak, and oth-

ers [12].
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During the same period, in 1957, B. Pontecorvo realized that if the neutrino is a

massive particle and lepton number is not conserved, then it may oscillate over time

(or, equivalently, distance) into its own antiparticle, the antineutrino [10]. Pontecorvo

was not aware of distinct neutrino flavors at the time, and this first oscillation the-

ory was developed in analogy to strangeness oscillations in the neutral kaon system,

postulated by Gell-Mann and Pais two years before [11].

Distinct neutrino flavors came as a surprise, when the muon neutrino was dis-

covered in 1962 with the first accelerator-based neutrino beam, by L. Lederman,

M. Schwartz, J. Steinberger, and collaborators [13]. This neutrino beam, consisting

of a beam of muon neutrinos from pion decays in flight, triggered the exploration

of neutrino interactions of significantly higher energies than what was previously

achievable. Soon after the discovery of the muon neutrino, Z. Maki, M. Nakagawa

and S. Sakata considered the possibility of neutrino oscillations among the electron

and the muon flavor states, and introduced neutrino mixing [14].

Another violation of a fundamental physics symmetry in weak interactions, the

CP symmetry, was discovered in 1964 by J. W. Cronin and V. Fitch, in the neu-

tral kaon system [15]. The CP operator combines the parity operation P mentioned

above, with the charge-conjugation operation C, reversing the sign of charge and

magnetic moment of a particle, and therefore implying the interchange of particle

and antiparticle. In 1973, M. Kobayashi and T. Maskawa realized that, for CP vio-

lation to occur, at least three generations of Dirac particles needed to exist [16]. In

1967, A. D. Sakharov first pointed out that CP violation in weak interactions could

be related to the matter-antimatter asymmetry present in the Universe today [17].

While the discovery of CP violation and its possible cosmological connection were

derived from the quark sector, it is believed today that they might also be applicable

to the neutrino sector.

In the 1960s, the gauge theory of electroweak interactions as we know it today

was developed by S. L. Glashow, S. Weinberg and A. Salam [18]. Important aspects
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of the electroweak theory are the unification of the weak and electromagnetic inter-

actions, the prediction of neutral weak interactions, and the spontaneous symmetry

breaking via the Higgs mechanism [19], generating masses for the gauge vector bosons

mediating the charged and neutral weak interactions. The neutral current weak inter-

action of neutrinos, characterized by a neutrino in its final state (and not a charged

lepton, as for charged weak interactions), was first detected in 1973 by the Gargamelle

bubble chamber experiment at CERN [20]. The massive, charged and neutral, gauge

vector bosons postulated by the electroweak theory were first observed by the UA1

experiment at the CERN SPS collider in 1983 [21].

Also during the 1960s, the exploration of the nuclear fusion processes in the core

of the Sun via the weakly-interacting neutrinos began. In 1968, R. Davis and collab-

orators first measured a deficit of solar neutrinos compared to the predictions of the

Solar Standard Model, with the Homestake chlorine detector [22]. In the following

years, the detection of solar neutrinos was firmly established, but the deficit with

respect to expectations remained. Already in 1968, V. N. Gribov and B. Pontecorvo

proposed neutrino oscillations among the two types of neutrinos known at the time,

the electron and the muon neutrino, as a possible mechanism to explain the solar

neutrino deficit [24].

In the mid-1980s, large water Cherenkov detectors were built underground to

measure the decay of the proton predicted by grand unified theories. While proton

decay has not been observed to date, two major discoveries were made with these de-

tectors, related to the observation of two other extraterrestrial sources of neutrinos.

First, in 1987, the Kamiokande (Japan) and IMB (USA) detectors simultaneously

observed a burst of neutrinos from the SN1987A supernova explosion in the Large

Magellanic Cloud [25]. Second, in 1988, the Kamiokande experiment measured a

deficit in the number of muon neutrinos produced by the interactions of cosmic rays

in the Earth’s atmosphere [26]. The muon neutrino deficit anomaly was later con-

firmed and interpreted in terms of muon neutrino to tau neutrino oscillations by the
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Super-Kamiokande experiment, in 1998 [27]. This third type of neutrino, the tau

neutrino, was directly observed only in 2000 by the DONUT experiment at Fermi-

lab [28]. However, its existence was postulated since the discovery in 1975 of its

electrically charged counterpart, the tau lepton, by M. Perl and collaborators [29],

and indirectly observed in 1989 via precision electroweak measurements at the LEP

electron-positron collider at CERN [30].

After the discovery of the solar neutrino deficit by the Homestake chlorine ex-

periment, the exploration of solar neutrinos continued on both the theoretical and

experimental fronts. In the late 1970s and early 1980s, S. P. Mikheev, A. Y. Smirnov

and L. Wolfenstein formulated neutrino oscillations in the presence of dense matter,

predicting large matter effects in solar neutrino oscillations [31]. In the early 1980s

and early 1990s, the Kamiokande, SAGE, and GALLEX underground experiments

confirmed the solar neutrino deficit [33], by detecting neutrinos mostly originated

in different solar nuclear fusion reactions than the ones detected by the Homestake

chlorine experiment. In 2001, the Super-Kamiokande and SNO experiments unam-

biguosuly confirmed that solar neutrino oscillations among the three neutrino flavors

occur, and that matter effects are present in solar neutrino oscillations [36].

In the 1990s, the trend in experimental neutrino oscillation physics switched

back to the use of man-made neutrino sources, from reactors and particle accelera-

tors. Several neutrino experiments studying oscillations were performed, many with

short neutrino propagation pathlengths between the neutrino source and the neu-

trino detection locations, roughly between 10 m and 1 km. No oscillation signals

were seen at short baselines, with the exception of a possible indication for muon

antineutrino to electron antineutrino oscillations in the accelerator-based LSND ex-

periment at Los Alamos [37], first reported in 1996, and still unconfirmed nor excluded

by other experiments. The consequences of this result are the focus of this thesis.

During the same period, long baseline neutrino experiments detected neutrinos pro-

duced hundreds of km away from accelerator and reactor sources. In 2002, the K2K
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accelerator-based experiment confirmed atmospheric neutrino oscillations [38], and

the KamLAND reactor-based experiment confirmed solar neutrino oscillations [39].

This concludes the historical account of major experimental discoveries and ideas

in particle physics and astrophysics that are closely related to neutrinos and the weak

interactions. Among the scientific advances mentioned above, ten have already been

awarded with Nobel Prizes in physics.

1.2 Theory of Massless and Massive Neutrinos

1.2.1 Massless Neutrinos and the Standard Model

The Standard Model gauge theory of electroweak interactions describe the interac-

tions of neutrinos in terms of the exchange of W±, Z0 intermediate vector bosons.

The couplings Wνl and Z0νν describe charged-current and neutral-current interac-

tions, respectively, where l refer to charged leptons. In this theory, neutrinos and

antineutrinos are massless, and only left-helicity neutrino states νL and right-helicity

antineutrino states ν̄R exist, that is weak interactions involve only two out of the

four components of Dirac fields. The chiral left-handed helicity states are given by

νL ≡ [(1 − γ5)/2]ν, where γ5 ≡ iγ0γ1γ2γ3 and γµ are Dirac matrices, and corre-

spond, for massless neutrinos, to the helicity states defined in the previous Section.

The experimentally observed (V-A) structure of charged-current weak interactions,

or equivalently the fact that left-handed neutrinos couple only to left-handed charged

leptons, is enforced into the theory by the SU(2)L gauge symmetry requirement for

the charged-current interaction Lagrangian:

− LCC =
g√
2
W−

ρ lLγρνL + h.c. (1.1)
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where g is the electroweak coupling constant, lL ≡ l†Lγ0, and L indicates the weak

isospin doublet, I = 1/2:

L ≡

 ν

l

 (1.2)

with I3 = 1/2,−1/2 for ν and l, respectively, in analogy to the proton-neutron

isospin doublet in strong interactions. The right-handed charged lepton lR forms

a weak-isospin singlet, I = 0. Similarly, the Lagrangian describing neutral current

interactions is given by:

− LNC =
g

2 cos θW

Z0
ρνLγρνL + h.c. (1.3)

where θW is the Weinberg (weak mixing) angle.

The conservation of electric charge and electric current is ensured by the invari-

ance of the LCC + LNC Lagrangian under U(1)Y , where the weak hypercharge Y

is related to the electric charge Q and the third component of the weak isospin via

Q = I3 + Y/2.

The Standard Model electroweak theory assumes three lepton generations, α =

e, µ, τ . This theory assumes an accidental flavor symmetry that is not imposed by

any gauge invariance principle, and that preserves the individual Le, Lµ, Lτ lepton

quantum numbers in all weak interactions, where the lepton quantum numbers are

defined as Le = 1, Lµ = Lτ = 0 for the (νe, e)L weak doublet, and similarly for

the muon and tau doublets. The corresponding antiparticles have opposite lepton

numbers. Therefore, neutrino flavor oscillations are not allowed in this theory.

Finally, the gauge invariance of the weak interaction Lagrangian is spontaneously

broken, and all fermions (with the exception of neutrinos) and W, Z gauge bosons

acquire mass, via the Higgs mechanism. In this mechanism, a weak isospin doublet

of scalar fields is added to the theory, and charged lepton masses are obtained via

Yukawa interaction terms in the Lagrangian:

− LD,l = fl(νLφ+lR + lLφ0lR) + h.c. (1.4)
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where fl are dimensionless Yukawa couplings and φ+,0 are the two components of

the Higgs weak isospin doublet, with electric charge +1 and zero, respectively. After

spontaneous symmetry breaking, 〈φ+〉 = 0, 〈φ0〉 = v/
√

2 where v ' 246 GeV is the

vacuum expectation value of the Higgs field, the neutrinos remain massless, while

the charged leptons acquire a mass mD,l = flv/
√

2. The Yukawa mass term for the

lepton l, −LD,l = mD,llLlR + h.c., is called a Dirac mass term. The same mechanism

applies for the generation of quark fermion masses. The Yukawa couplings are free

parameters of the theory, and set by the experimentally measured fermion masses m

via f ' 5.7 · 10−6(m/1 MeV).

1.2.2 The See-Saw Mechanism for Massive Neutrinos

Neutrino mass terms can be added to the Standard Model Lagrangian in two ways.

The first way is in direct analogy to the Dirac masses of quarks and charged leptons,

by adding the two extra components of the Dirac neutrino field, the right-handed

neutrino and the left-handed antineutrino fields:

− LD = νLmDνR + h.c. (1.5)

Majorana mass terms can be constructed from the left-handed neutrino states

alone, from right-handed neutrino states only, or from both. For example, for right-

handed neutrino states only, the Majorana mass term is:

− LR =
1

2
(νR)cmRνR + h.c. (1.6)

where νc = Cν̄T , C is the charge-conjugation operator, and mR is a free parameter

with dimensions of mass. Majorana mass terms in the Lagrangian convert particles

into their own antiparticles, and are therefore forbidden for all electrically charged

fermions because of charge conservation. Moreover, processes involving Majorana

mass terms violate the Standard Model total lepton number L ≡ Le,µ,τ by two units,

which is not a good quantum number anymore.
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Neutrino masses, although not measured yet, are known to be small, of the or-

der of 1 eV or less [60]. The explanation of neutrino masses via Dirac mass terms

alone require neutrino Yukawa couplings of the order of 10−12 or less. The current

theoretical prejudice is that neutrino Yukawa couplings with fν � 1 and fν � fl are

unnatural, if not unlikely.

The so-called “see-saw mechanism” provides a way to accommodate neutrino

masses that is considered more “natural”. The simplest realization of the see-saw

model is to add both a Dirac mass term and a right-handed mass term to the La-

grangian, as given by Eqs. 1.5 and 1.6, for each of the three neutrino flavors. For

each neutrino flavor, two fields of definite chirality and definite mass are obtained.

Assuming neutrino Yukawa couplings of the order of the charged fermion couplings,

and mR � v & mD of the order of some high mass scale where new physics re-

sponsible for neutrino masses is supposed to reside, the see-saw mechanism yields a

small left-handed neutrino mass eigenvalue of mi ' m2
D/mR and a large right-handed

neutrino mass eigenvalue of m3+i ' mR, where i = 1, 2, 3 runs over the three fermion

generations of the Standard Model. The corresponding mass eigenfields νi and ν3+i

are found to be equal to their corresponding charge-conjugate fields, νc
i = νi and

νc
3+i = ν3+i. Particles described by fields satisfying this condition are called Majo-

rana particles. Majorana particles and Majorana antiparticles are identical, and are

truly neutral particles in the sense that they do not have electrical nor any other

type of charge. Neutrinos whose fields do not satisfy this Majorana condition are

called Dirac neutrinos. In the Standard Model case of left-handed neutrino fields

only, there is no physical difference between massless Majorana neutrinos and mass-

less Dirac neutrinos, while the Dirac/Majorana nature of neutrinos is in principle

observable in the case of massive neutrinos.

The neutrino couplings to the W and Z bosons are unaffected by Dirac and/or

Majorana mass terms in the Lagrangian, and therefore only the left-handed, active,

neutrinos participate in weak interactions, while their right-handed partners don’t,
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and are called sterile neutrinos.

1.3 Neutrino Mixing and Flavor Oscillations

As discussed above, neutrinos only interact via weak processes. Experimentally, this

implies that neutrinos are both produced and detected as weak eigenstates. In con-

trast, the free propagation of neutrinos between their production and detection point

is governed by the free Hamiltonian, whose eigenstates are states with definite neu-

trino mass. Nothing requires that neutrino weak and mass eigenstates coincide. In

the case in which a weak eigenstate is expressed by a mixture (linear combination)

of more than one mass eigenstate, and the neutrino mass eigenvalues in this mixture

are different from each other, oscillations among neutrino flavors can be observed as

a function of propagation time/distance.

Neutrinos of a given weak flavor α = e, µ, τ are defined as the neutrinos produced

or detected in association with the charged lepton lα, in the charged weak interactions

described by:

− LCC =
g√
2
W−

ρ

∑
α=e,µ,τ

lLαγρνLα + h.c. (1.7)

In a straightforward generalization of the simplest see-saw mechanism presented

above to include three generations, the three weak eigenstates |να〉 are generally

expressed in terms of a linear combination of six eigenstates νi(t):

|να〉 = U∗
αi|νi〉 (1.8)

where α = e, µ, τ , i = 1, . . . , 6, and U is a 6× 6 unitary mixing matrix diagonalizing

the 6×6 symmetric, generally complex neutrino mass matrix MD+R in the weak basis,

via the unitary transformation UT MD+RU = Mdiag, where MD+R is now specified in

terms of the 3× 3 matrix blocks mD and mR:

MD+R =

 0 (mD)T

mD mR

 (1.9)



11

From Eq. 1.8 and from the time evolution of free neutrinos, the propagation of a

neutrino produced as weak eigenstate α at time t and distance L is:

|να(t)〉 =
∑

k

U∗
αke

−i(Ekt−pkL)|νk〉 =
∑

β=e,µ,τ

(
∑

k

U∗
αke

−i(Ekt−pkL)Uβk)|νβ〉 (1.10)

Therefore, the probability to detect a neutrino of weak eigenstate β, after a time

t from its production as weak eigenstate α, is:

Pνα→νβ
(t) = |〈νβ|να(t)〉|2 = |

∑
k

U∗
αke

−i(Ekt−pkL)Uβk|2 (1.11)

If neutrinos are ultrarelativistic (and c ≡ 1), then t ' L, and furthermore if neu-

trinos are produced with definite energy E, then E − pk ' m2
k/(2E). By reabsorbing

the phase e−i(E−p1)L, Eq. 1.11 can be rewritten in the ultrarelativistic regime as:

Pνα→νβ
(t) = |

∑
i

U∗
αie

−i∆m2
i1L/(2E)Uβi|2 (1.12)

where we have defined ∆m2
i1 ≡ m2

i −m2
1. By developing the product, using simple

trigonometric identities, and reintroducing ~, c, Eq. 1.13 can be recast into the form

[40]:

P (να → νβ; L, E) = δαβ − 4
∑
i>j

R(U∗
αiUβiUαjU

∗
βj) sin2[∆m2

ijL/(4~cE)] +

+2
∑
i>j

I(U∗
αiUβiUαjU

∗
βj) sin[∆m2

ijL/(2~cE)] (1.13)

where R and I indicate the real and imaginary parts, respectively. For antineutrinos,

the oscillation probability is obtained from Eq. 1.13 by replacing the mixing matrix

U with its complex-conjugate matrix. Therefore, if the mixing matrix is not real,

neutrino and antineutrino oscillation probabilities can differ. Furthermore, from Eq.

1.13, it follows directly that neutrino flavor oscillations (α 6= β) are possible only if

neutrino weak and mass eigenstates do not coincide (non-diagonal neutrino mixing

matrix U) and neutrino mass eigenvalues are not all degenerate (∆m2
ij 6= 0 for at least

one (i, j) pair). Moreover, Eq. 1.13 shows that, at least in the CP-conserving case,

neutrino oscillations in vacuum are not sensitive to the sign of the mass splittings
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∆m2
ij. In very dense matter environments, the neutrino propagation cannot be con-

sidered as a free propagation, and matter effects modify Eq. 1.13 in a way that is not

symmetric under the change ∆m2
ij → −∆m2

ij. A special case of neutrino oscillations

in matter will be considered in Chapter 2.

If no specific assumptions on the physics mechanisms that generate neutrino

masses and mixings are made, how many independent parameters need to be mea-

sured, experimentally? Considering N neutrino species, there are N independent

neutrino mass parameters. In neutrino oscillation experiments, there are N − 1 in-

dependent mass splittings, for example ∆m2
i,i−1, i = 2, . . . , N . Also, a (generally

complex) N × N mixing matrix contains N2 independent, real parameters. These

can be subdivided into N(N − 1)/2 mixing angles and N(N + 1)/2 phases. In the

case of Dirac neutrinos, there are (N − 1)(N − 2)/2 physical phases, all of which can

be in principle detected in oscillation experiments. In the case of Majorana neutrinos,

there are N −1 additional physical, Majorana phases. Majorana phases, unlike Dirac

phases, cannot be measured in neutrino oscillation experiments, but can, in principle,

be detected in different experiments (see Section 1.5).

The expression given above, with its 6×6 neutrino mixing matrix, represents the

general case for Majorana neutrinos produced via a see-saw model. In this general

case, the three sterile neutrino states can be described in terms of the same mixing

matrix U (its last three rows) and the same six mass eigenstates as the three active

states. Therefore, both oscillations among active neutrino flavors and active-sterile

neutrino oscillations are in principle observable [41]. Oscillations only among active

flavors are observable in two, more commonly considered, cases, and a 3 × 3 mixing

matrix involving only three neutrinos is sufficient. The first case is the one in which

sterile neutrinos are very heavy, mR > v where v is the electroweak energy scale, as

typically assumed. In this case, the mixings Uαi, with i > 3, are greatly suppressed,

by factors proportional to mD/mR. The second case is the one of Dirac neutrinos

from a minimally extended Standard Model theory, that is neutrinos whose masses
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are generated by the addition of a Dirac mass term only in the Lagrangian. In this

case, sterile neutrinos decouple from the theory, and are not physically observable.

We will give some examples of the phenomenology of active-sterile neutrino oscil-

lations in Chapter 2, while below we consider two important special cases: active

three-neutrino, and active two-neutrino mixings. We focus on neutrino oscillations

phenomenology, and we drop Majorana phases from the discussion.

The neutrino pathlengths, L, and energies, E, probed in neutrino experiments are

such that, often, Eq. 1.13 can be recast in terms of a single mass splitting. This limit

is sometimes called the “one mass scale dominance” limit, or the “quasi-two neutrino

mass approximation”. By making the further assumption that only two neutrino

weak eigenstates (α, β = e, µ for definiteness) and two mass eigenstates (i = 1, 2) are

relevant, Eq. 1.13 can be written as:

P (να → νβ) = δαβ − 4R(U∗
α2Uβ2Uα1U

∗
β1) sin2[∆m2L/(4~cE)] +

+2I(U∗
α2Uβ2Uα1U

∗
β1) sin[∆m2L/(2~cE)] (1.14)

where ∆m2 ≡ ∆m2
21. From the discussion above, the physical parameters in the

2× 2 mixing matrix are one mixing angle θ and no Dirac phases. The mixing angle

θ specifies the rotation among weak eigenstates and mass eigenstates:

1 2

U =
e

µ

 cos θ sin θ

− sin θ cos θ

 (1.15)

Let us assume now that α = µ, β = e. From Eqs. 1.14 and 1.15, the two-neutrino

oscillation probability formula is:

P (νµ → νe) = sin2 2θ sin2[∆m2L/(4~cE)] '

' sin2 2θ sin2[1.27∆m2(eV 2)L(km)/E(GeV )] (1.16)

with P (νµ → νµ; L, E) = 1− P (νµ → νe; L, E).

In the case of three-neutrino mixing, there are two independent mass splittings
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∆m2
21, ∆m2

32, three mixing angles θ12, θ13, θ23, and one Dirac phase δ. A common

parametrization for the 3× 3 mixing matrix is [40]:

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 =

=


c12c13 s12c13 s13e

−iδ

(−s12c23 − c12s23s13e
iδ) ( c12c23 − s12s23s13e

iδ) s23c13

( s12s23 − c12c23s13e
iδ) (−c12s23 − s12c23s13e

iδ) c23c13


(1.17)

where cij ≡ cos θij and sij ≡ sin θij

1.4 Experimental Signatures for Neutrino Oscilla-

tions

Neutrino oscillations are inferred from a discrepancy between the number of observed

neutrino interactions with respect to the number of interactions predicted, assuming

no oscillations. Moreover, since the oscillation probability is, in general, affected

by the neutrino energy, the extent of this discrepancy is neutrino energy-dependent.

Two types of oscillation measurements are possible. The first type is an appearance

measurement, where a neutrino of some weak flavor type is produced (say, a muon

neutrino), and a different neutrino type (e.g., an electron neutrino) is observed at some

distance from the neutrino source. The second type is a disappearance measurement,

where a known amount of neutrinos of some weak flavor type is produced, and a

smaller amount of that same weak flavor type is observed after some distance/time.

If a discrepancy between observations and predictions assuming no oscillations

is present, one can then find what are the possible oscillation hypotheses that are

compatible with the observations, if any.



15

1.4.1 Atmospheric Neutrino Oscillations

The disappearance of muon neutrinos produced by cosmic ray interactions in the at-

mosphere has now been firmly established using large underground water Cherenkov

detectors. Atmospheric neutrinos that can be cleanly reconstructed in these detec-

tors are typically produced with an energy E ∼ 1 − 10 GeV, and travel distances

L ∼ 102 − 104 km, where the shortest distance corresponds to downward-going neu-

trinos produced in the atmosphere above the detector, and the longest distance cor-

responds to upward-going neutrinos produced in the atmosphere at the antipodes

and crossing the Earth’s diameter, before interacting in the detector. Therefore,

these experiments cover the wide range L/E ∼ 1 − 104 km/GeV, and neutrino os-

cillations in the range ∆m2 ∼ 10−4 − 1 eV2 may cause observable L/E spectral

distortions. The current-generation, atmospheric water Cherenkov detector is the

Super-Kamiokande detector in Japan. The neutrino energy and direction is estimated

from the total momentum vector magnitude and direction of final state particles from

the neutrino interaction, reconstructed via the Cherenkov ring pattern. The pattern

of the most energetic Cherenkov ring is used to distinguish electron neutrino from

muon neutrino interactions. The number of observed downward-going muon neutri-

nos (small L/E) is consistent with the number expected for no neutrino oscillations,

while only about half of upward-going muon neutrino interactions are observed, com-

pared to the no-oscillation hypothesis. Moreover, the number of electron neutrinos

observed at all L/E is consistent with the Standard Model expectation. Overall, the

Super-Kamiokande data can be explained via νµ → ντ oscillations due to full mixing

(θ ' π/4) and ∆m2 ' 2.4 · 10−3 eV2. More stringent limits on νµ → νe oscillations at

this ∆m2 scale have been obtained by the CHOOZ reactor antineutrino experiment,

which did not measure any disappearance of few MeV electron antineutrinos over

pathlengths of L ∼ 1 km. The ratio of observed-to-predicted L/E distributions for

muon neutrino interactions at Super-Kamiokande is given in the left panel of Fig. 1.1,

together with the best-fit νµ → ντ hypothesis, and two alternative, beyond the Stan-
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Figure 1.1: Left: points indicate the ratio of observed to predicted (for no oscillations) muon

neutrino events at Super-Kamiokande, as a function of the reconstructed L/E, together with

the best-fit hypotheses for νµ → ντ oscillations (solid line), neutrino decay (dashed), and

neutrino decoherence (dotted) [42]. Right: points indicate the positron yields from ν̄ep →

e+n interactions, as a function of positron energy, observed by the CHOOZ experiment; the

solid line show the yield expected for no oscillations [43].

dard Model explanations of neutrino data, neutrino decay and neutrino decoherence,

which are disfavored compared to oscillations [42]. The observed energy distribution

of positron events from ν̄ep → e+n interactions at CHOOZ is given in the right panel

of Fig. 1.1, together with the no-oscillation prediction [43]. The Super-Kamiokande

atmospheric result has recently been confirmed by the K2K experiment [38], which

uses the same Super-Kamiokande detector, and ∼ 1 GeV muon neutrinos from a

accelerator-based source located 250 km away from the detector.

1.4.2 Solar Neutrino Oscillations

The most convincing evidence to date that solar electron neutrinos oscillate into

other active neutrino flavors (νµ or ντ ) comes from the SNO experiment in Canada.
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Figure 1.2: Left: solar muon or tau neutrino flux versus electron neutrino flux, as measured

by three different neutrino reactions with the SNO detector [44]; the dashed lines enclose

the Solar Standard Model prediction [45]. Right: points indicate the ν̄e spectrum observed

in KamLAND, divided by the no-oscillation expectation, as a function of L0/E. The curves

indicate the best-fit neutrino oscillation, decay, and decoherence hypotheses [46].

The SNO detector is also an underground Cherenkov detector, filled with heavy wa-

ter (D2O), and detects few MeV solar neutrino interactions via the charged-current

(CC) process νed → ppe−, the neutral-current (NC) process ναd → pnνα, and the

elastic scattering (ES) process ναe− → ναe−. While the CC process is only sensitive

to electron neutrinos, the NC and ES processes are sensitive to all active neutrino

flavors να, α = e, µ, τ . The left panel in Figure 1.2 shows the solar neutrino fluxes

φµ,τ and φe estimated by the SNO measurements [44]. The total active neutrino flux

φµ,τ +φe is in good agreement with the Solar Standard Model expectation φSSM [45].

On the other hand, only about a third of the originally produced electron neutrinos

is detected on Earth.

In general, results from various solar neutrino experiments are affected by

neutrino oscillations in differing ways, depending on their energy threshold for neu-

trino detection. By combining the SNO results with the results from the Super-

Kamiokande, Homestake, and gallium experiments, and by taking into account mat-

ter effects inside the Sun and Earth, it is found that solar neutrino oscillations are

consistent with νe → νµ,τ oscillations specified by a mixing angle θ with tan2 θ ' 0.4,
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and ∆m2 ' 8 ·10−5 eV2 [47]. For this ∆m2 range, matter effects play a dominant role

on neutrino oscillations, allowing to resolve the (θ ↔ π/2− θ) degeneracy of vacuum

neutrino oscillations.

The KamLAND experiment in Japan has confirmed solar neutrino oscillations by

detecting the disappearance of few MeV electron antineutrinos produced at nuclear

reactors located a few hundreds of km away from the liquid scintillator KamLAND

detector [39]. Electron antineutrino interactions ν̄ep → ne+ are tagged by the prompt

positron signal, and the 2.2 MeV γ ray from the ∼ 200 µs delayed neutron capture

signal. The positron energy is used to estimate the ν̄e energy E event-by-event, while

the average neutrino pathlength L0 ' 180 km is inferred from simulations. The L0/E

distribution of KamLAND data is shown in the right panel of Fig. 1.2, together with

the best-fit neutrino oscillation, neutrino decay, and neutrino decoherence hypothe-

ses [46]. As for atmospheric neutrinos, the disappearance of reactor antineutrinos is

well explained by neutrino oscillations, while mechanisms other than oscillations are

highly disfavored.

1.4.3 Global Three-Neutrino Fits

Solar and atmospheric neutrino oscillation data can be collectively analyzed. It is

found [47] that all these datasets are consistent with oscillations among the three

neutrino flavors νe, νµ, ντ . Furthermore, the mass splittings ∆m2
21, ∆m2

32, and the

mixing angles θ12, θ23, θ13 appearing in Eq. 1.17, describing three-neutrino oscillations

are now relatively well known, as shown by the results of a global fit given in Fig.

1.3 [47]. Present data also measure the sign of the solar mass splitting ∆m2
21 (or

equivalently the θ12 octant). On the other hand, the sign of the atmospheric mass

splitting ∆m2
32 and the value of the Dirac CP-violating phase δ are currently unknown.

Experiments are now being planned to probe these two parameters, as well as to

extend the θ13 sensitivity [48].
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Figure 1.3: Allowed ranges for the three-neutrino mass and mixing parameters ∆m2
21,

∆m2
31, θ12, θ23, and θ13, from global fits of solar and atmospheric oscillation data [47]. The

regions correspond to 90%, 95%, 99% and 3 σ confidence level.

1.4.4 Short-Baseline Neutrino Oscillations and the LSND

Signal

Several neutrino oscillation searches have been performed to probe higher ∆m2 val-

ues than what indicated by solar and atmospheric neutrino oscillations. In these

searches, the possible appearance or disappearance of neutrinos produced at acceler-

ators and reactors over distances L ∼ 10−2 − 1 km is studied, and these experiments

are generally called short-baseline experiments. Several oscillation channels have been

explored, as summarized in Tab. 1.1.

The only positive oscillation result among the short-baseline oscillation searches

is the evidence for ν̄µ → ν̄e oscillations reported by the Liquid Scintillator Neutrino

Detector (LSND) experiment at Los Alamos Laboratories (USA) [37]. A muon an-

tineutrino source with a known energy distribution with endpoint of 52.8 MeV is

produced via the π+/µ+ decay at rest chain π+ → µ+νµ, µ+ → e+νeν̄µ, with little ν̄e

contamination. At detection, about 30 m away from the neutrino source, a ν̄e excess

is seen by tagging the positron and the γ from neutron capture from the inverse β

decay reaction, ν̄ep → e+n. The neutrino energy Eν is estimated from the measured
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Channel Exp. Optimal Low ∆m2 sin2 2θ Constraint Ref.

∆m2 Reach High ∆m2 Optimal ∆m2

νµ → νe LSND 2 · 100 3 · 10−2 [2.5− 3.8] · 10−3 [1.2− 3.2] · 10−3 [37]

KARMEN 3 · 100 6 · 10−2 < 1.7 · 10−3 < 1.0 · 10−3 [49]

NOMAD 3 · 101 4 · 10−1 < 1.4 · 10−3 < 1.0 · 10−3 [50]

νe → ν6e Bugey 6 · 10−1 1 · 10−2 < 1.4 · 10−1 < 1.3 · 10−2 [51]

CHOOZ 6 · 10−3 7 · 10−4 < 1.0 · 10−1 < 5 · 10−2 [43]

νµ → ν6µ CCFR84 9 · 102 6 · 100 none < 2 · 10−1 [52]

CDHS 3 · 100 3 · 10−1 none < 5.3 · 10−1 [53]

νµ → ντ NOMAD 1 · 102 7 · 10−1 < 3.3 · 10−4 < 2.5 · 10−4 [54]

CHORUS 6 · 101 5 · 10−1 < 6.8 · 10−4 < 4.5 · 10−4 [55]

νe → ντ NOMAD 1 · 102 6 · 100 < 1.5 · 10−2 < 1.1 · 10−2 [54]

CHORUS 9 · 101 7 · 100 < 5.1 · 10−2 < 4 · 10−2 [55]

Table 1.1: Most sensitive short- and medium-baseline neutrino oscillation searches in var-

ious oscillation channels. ∆m2 is expressed in eV2, and the low ∆m2 reach and sin2 2θ

constraints are given at the 90% confidence level.

positron energy and emission angle, using two-body kinematics. The excess has a

3.8σ significance, and its L/Eν dependence is compatible with oscillations, as shown

in the left panel of Fig. 1.4. The KARMEN experiment at Rutherford Laboratory

(UK) performed a ν̄µ → ν̄e search with a neutrino source and detection principle that

are similar to the LSND ones [49]. The main differences between the two experi-

ments’ oscillation sensitivities are due to the shorter KARMEN baseline of L = 17.7

m, and the smaller KARMEN statistics. The KARMEN results are compatible with

no ν̄µ → ν̄e oscillations, and are shown in the right panel of Fig. 1.4 as a function of

positron, prompt energy.

The LSND-allowed and KARMEN-excluded regions in two-neutrino oscillation

parameter space (sin2 2θ, ∆m2) are shown in the left panel of Fig. 1.5, together with

the exclusion region from the null electron antineutrino disappearance result obtained

by the Bugey experiment [37, 49, 51]. The KARMEN and Bugey null oscillation re-
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Figure 1.4: Left: the points show the L/E distribution of ν̄e candidate events observed in

LSND; the red and green histograms show the expectations for no oscillations, and the blue

histogram show the best-fit oscillation contribution. Right: the points indicate the prompt,

visible energy distribution observed in KARMEN, and the histogram shows the expectation

for no oscillations.

sults exclude a part of the LSND allowed region, while another part has not yet

been refuted nor confirmed by any neutrino experiment other than LSND. A joint

LSND-KARMEN oscillation analysis has been performed by collaborators from both

experiments [56]. The analysis yields a level of 64% compatibility of the two ex-

perimental outcomes. Assuming statistical compatibility, the joint allowed region in

oscillation parameters space, shown in the right panel of Fig. 1.5, is consistent with

the LSND-only region.

The LSND oscillation evidence at high ∆m2, in conjunction with the solar

and atmospheric neutrino oscillation results, cannot be accommodated within the

simplest Standard Model extension possible, that is one with only three, active, mas-

sive neutrinos. In simple terms, the reason stems from the fact that ∆m2
LSND �

∆m2
atm + ∆m2

sol, in contrast with the expectation from three-neutrino oscillation

models, that is ∆m2
31 ≡ ∆m2

32 + ∆m2
21.
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Figure 1.5: Left: the filled area shows the LSND 90% and 99% CL allowed region in

oscillation parameter space [37]; the dashed and dotted curves show the 90% CL upper

limits on ν̄µ → ν̄e oscillations from KARMEN [49], and ν̄e → ν̄6e oscillations from Bugey

[51], respectively. Right: joint LSND-KARMEN allowed region in oscillation parameter

space, assuming statistical compatibility among the two experimental outcomes [56].

1.5 Other Neutrino Mass and Mixing Measure-

ments

Neutrino oscillations experiments are not the only way to probe neutrino masses and

mixings. We briefly discuss here three more examples: tritium β decay kinematics

measurements, neutrinoless double β decay searches, and observational cosmology.

1.5.1 Laboratory-Based Neutrino Mass Searches

Neutrino oscillation experiments cannot measure the absolute scale of neutrino masses.

On the other hand, the differential electron energy spectrum in β decay experiments

is affected by both neutrino masses, and by the mixings defining the electron neutrino
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state in terms of mass eigenstates. The region of interest to the study of neutrino

properties is located near the β endpoint. The most sensitive searches conducted so

far are based upon the decay of tritium, via 3H →3 He+e−ν̄e, mostly because of the

very low β endpoint energy of this element (18.6 keV). For a spectrometer integrating

over the electron energy interval δ near the β-decay endpoint, the count rate is [57]:

n(δ) =
R̄

3

n∑
i=1

|Uei|2(δ2 −m2
i )

3/2 (1.18)

where the quantity R̄ does not depend on the small neutrino masses and mixings, and

and only the neutrino masses mi such that δ > mi are considered in the summation.

From the experimental point of view, tritium β decay results are generally expressed

in terms of a single effective mass m(νe):

n(δ) =
R̄

3
(δ2 −m(νe)

2)3/2 (1.19)

where m(νe) is the fit mass parameter. In the limit δ2 � m2
i , the relation between the

true masses and mixings to the fitted mass m(νe) is independent from the integration

interval δ:

m(νe)
2 '

n∑
i=1

|Uei|2m2
i (1.20)

The current best measurements on m(νe)
2 come from the Troitsk and Mainz experi-

ments [58], which have very similar m(νe)
2 sensitivities. Both found no evidence for

a nonzero m(νe)
2 value; the latest Mainz result is m(νe)

2 = −1.6 ± 2.5 ± 2.1 eV2,

or m(νe) ≤ 2.2 eV at 95% CL, using δ = 70 eV [58]. The planned tritium β decay

experiment KATRIN should be able to improve the sensitivity to m(νe) by roughly

an order of magnitude in the forthcoming years, thanks to its better statistics, energy

resolution, and background rejection [59].

Neutrino oscillations do not probe the neutrino Dirac/Majorana character. On

the other hand, the neutrinoless double-beta (0νββ) decay process is possible only if

neutrinos are Majorana particles, while it is forbidden for Dirac neutrinos. Moreover,

assuming that neutrinos are Majorana particles, 0νββ searches probe also neutrino
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masses and mixings. Double-beta decay is a rare nuclear transition accompanied by

the simultaneous emission of two electrons. The dominant mode is the second order

weak process (A,Z) → (A,Z+2)e−e−ν̄eν̄e, or 2νββ, which conserves lepton number

and is therefore allowed within the Standard Model. Neutrinoless double-beta decay

proceeds without antineutrino emission, via (A,Z) → (A,Z+2)e−e−. The experimen-

tal signature of 0νββ is given by a measurement for the sum of the two electron

energies consistent with the Q-value of the transition. The 0νββ rate (T 0ν
1/2)

−1 is

related to the effective neutrino Majorana mass mββ via [60]:

(T 0ν
1/2)

−1 = G0ν |M0ν |2m2
ββ (1.21)

where G0ν is a phase space factor, M0ν is a nuclear matrix element, and the effective

Majorana mass is given by:

mββ = |
∑

i

U2
eimi| (1.22)

where the Uei mixing matrix elements are in general complex, and the resulting ex-

pression for mββ may in general depend on both Dirac and Majorana phases. No

convincing indication of 0νββ has been found, so far, and an upper limit mββ . 1 eV

on the effective neutrino Majorana mass has been obtained [60]. The uncertainties

in the nuclear matrix elements evaluation result in about a factor of 3 uncertainty

in the Majorana mass uncertainty, for a given 0νββ rate. Future experiments with

significantly improved sensitivities are being planned [48].

1.5.2 Neutrinos and Cosmology

Observational cosmology can also constrain neutrino properties. Two examples are

discussed here: the neutrino energy density during the Big Bang Nucleosynthesis

(BBN) era affects the primordial abundances of Helium and other elements, and neu-

trino masses affect the large scale structure formation of the Universe.
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The Helium primordial abundance is set by the neutron-to-proton ratio at weak

freeze-out, that is at the epoch (temperature) at which the rate for the weak inter-

action process pe− ↔ nνe equals the expansion rate of the Universe. In general,

the higher the neutrino energy density, or equivalently the so-called number of effec-

tive neutrino species Neff present during BBN, the higher the expansion rate, and

the higher the freeze-out temperature Tf is. In the absence of a lepton asymmetry,

generally expressed in terms of non-zero neutrino chemical potentials, the neutron-

to-proton ratio is related to Tf via n/p ' exp[−(mn−mp)/Tf ], where mn and mp are

the neutron and proton masses, respectively. Therefore, the higher Neff, the higher

the neutron-to-proton ratio, and the higher the primordial Helium abundance is. The

measured primordial Helium abundance, in conjunction with standard cosmology as-

sumptions, yields 1.7 < Neff < 3.5 at 95% confidence level [61].

Light, active neutrinos decouple from the Universe thermal bath when they are

relativistic. In this case, the free-streaming scale of neutrinos is therefore of the order

of the Universe horizon at that epoch. Over distances smaller than the neutrino free

streaming scale, massive neutrinos tend to wash out matter clustering due to gravity.

As the Universe expands, massive neutrinos become eventually non-relativistic, their

free-streaming scale does not scale as the event horizon anymore, and the effect of

neutrinos on structure formation becomes negligible. The observations of the cosmic

microwave background anisotropies, and of the power spectrum of large-scale matter

structure, are consistent with a negligible effect from non-zero neutrino masses, and

typical upper limits on the sum of neutrino masses of
∑

i mi . 1 eV are obtained

[62].

In particular, cosmology may provide constraints on sterile neutrinos. Predic-

tions of standard cosmology assume that light sterile neutrino species, if they exist,

are present in the early Universe in the same abundances as the active species. In

this picture, massive sterile neutrinos with significant mixing to active neutrinos are

expected to alter both the Helium abundance and the matter power spectrum pre-
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dictions, in disagreement with observations. However, several mechanisms have been

proposed that would suppress the sterile neutrino abundances in cosmology: primor-

dial lepton asymmetries [63, 66], additional neutrino interactions [65], low reheating

temperature [64], or other possibilities [61]. We briefly describe the first two, very

general, mechanisms.

We first consider the possibility that a relic neutrino asymmetry is present in the

early Universe, that is Lνα ≡ (nνα −nν̄α)/nγ 6= 0, where nνα and nν̄α are neutrino and

antineutrino number densities for the neutrino flavor α, and nγ is the photon number

density. In particular, we consider the effect that a non-zero Lνα value would have

in governing the να ↔ νs conversion rate via oscillations; we assume here (as it is

customary) that neutrino oscillations are the main mechanism to populate the early

Universe with sterile neutrinos that are in thermal equilibrium with the other rela-

tivistic degrees of freedom present. In the case of a net relic neutrino asymmetry, the

cumulative effect of neutrino-neutrino, coherent forward scattering interactions can

be described by an effective, non-zero, matter potential. If the neutrino masses and

mixings describing active-sterile neutrino oscillations are such that resonant, matter-

induced να ↔ νs oscillations would only happen after neutrino decoupling (Tdec ' 3

MeV), at temperatures Tres < Tdec, the presence of this additional lepton number

matter potential would drive the oscillations further off-resonance, suppressing the

effective active-sterile neutrino mixing, and therefore sterile neutrino production. It

is shown that a net relic neutrino asymmetry Lνα & 5 · 10−3 in any of the active

neutrino flavors is sufficient to essentially fully suppress sterile neutrino production

in the early Universe [66]. This condition is consistent with present upper bounds on

relic neutrino asymmetries, given by Lνα . 0.1 [67].

Another way to suppress neutrino production in the Universe is via additional

neutrino interactions. For example, the coupling of neutrinos with a light boson φ

(with mφ � mν) has been considered [65]. In this scenario, neutrinos may remain in

thermal equilibrium until late times, for example via νν ↔ φφ, and neutrino decou-
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pling would occur when they are non-relativistic, that is when the process φφ → νν

would be kinematically forbidden. For sufficiently large couplings, neutrino freeze-

out would occur at temperatures Tdec � mν , and their final abundance would be

suppressed by a factor exp[−mν/Tdec] � 1, generating a neutrinoless Universe. The

existence of such a light boson, with sufficiently large couplings to neutrinos for this

mechanism to occur, currently evades all cosmological limits, and it is therefore al-

lowed.

1.6 The MiniBooNE νµ → νe Search

The main goal of the MiniBooNE experiment is to unambiguously confirm or refute

the evidence for ν̄µ → ν̄e oscillations seen by the LSND experiment at Los Alamos.

This is important because, as stated above, the LSND oscillation result is incompat-

ible with the robust evidence for solar and atmospheric neutrino oscillations in the

simplest three-neutrino mixing paradigm.

The MiniBooNE experiment is probing the oscillation parameter space indicated

by LSND via a νµ → νe search, and possibly by a future ν̄µ → ν̄e search. The large

sample of neutrino interactions detected at MiniBooNE will allow coverage of the

full LSND allowed region at 4 σ significance, as shown in the left panel of Fig. 1.6

[68]. Furthermore, the sources of systematic uncertainties affecting the MiniBooNE

νµ → νe search are very different than the ones affecting the LSND result. This is

because, despite the similar neutrino L/E range measured in the two experiments,

neutrinos detected at MiniBooNE are about a factor of 20 more energetic than LSND

neutrinos, with typical energies of the order of 1 GeV. As a consequence, both the os-

cillation signal detection process, and the main backgrounds to the oscillation search,

are different in MiniBooNE and LSND. The oscillation signal detection process used

for the MiniBooNE νµ → νe search is the electron neutrino, charged-current, quasi-

elastic neutrino interaction, νen → e−p. The main backgrounds to the oscillation
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search are due to the intrinsic (irreducible) νe contamination in the beam from muon

and kaon decays, and from νµN → νµNπ0 neutrino neutral current interactions,

where the two Cherenkov rings from π0 → γγ decays are misidentified as a single,

electron-like Cherenkov ring.

In the case of a confirmation of the LSND signal, MiniBooNE may also be able

to discern the mass and mixing parameters responsible for neutrino oscillations, as

shown in the right panel of Fig. 1.6 [68]. A rough determination of the LSND neutrino

mass and mixing parameters would not only be of extraordinary interest in itself, but

would also serve as guidance for the planning of future short-baseline experiments

such as a two-detector experiment at Fermilab, BooNE.

1.7 Synopsis of this Thesis

This thesis is organized as follows. Chapter 2 presents my work on the phenomenol-

ogy of sterile neutrinos. Chapter 3 describes the MiniBooNE neutrino beamline and

its magnetic focusing horn, which I had primary responsibility within the collabora-

tion for understanding and monitoring. Chapter 4 discusses in detail the neutrino

flux predictions for the MiniBooNE experiment; the beam Monte Carlo simulation

developed for this purpose has been my main software responsibility. Chapters 5 and

6 summarize neutrino interactions in the 1 GeV energy regime, and the MiniBooNE

detector, respectively. Chapters 7 and 8 present the physics analysis undertaken, that

is the characterization of charged-current, quasi-elastic (νµn → µ−p) interactions, and

the study of muon neutrino disappearance via muon-to-sterile neutrino oscillations.
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Figure 1.6: Left: MiniBooNE oscillation sensitivity for 1021 protons on target. The dark

(light) blue areas are the LSND 90% (99%) CL allowed regions. The three curves give the

90%, 3 σ, and 5 σ sensitivity regions for MiniBooNE. Right: one and two σ contours for

an oscillation signal with ∆m2 = 0.4 or 1.0 eV2, and for a data sample corresponding to

1021 protons on target [68].



Chapter 2

Phenomenology of Sterile

Neutrinos

In this Chapter, the phenomenological work on sterile neutrinos done during the

course of this thesis is presented. The Chapter is divided into three sections:

• Section 2.1 discusses the constraints on sterile neutrino mass hierarchies, ob-

tained from the observation of supernova neutrinos;

• Section 2.2 discusses the constraints on the number of light sterile neutri-

nos, their masses and their mixings, achieved from a combined analysis of

accelerator-based and reactor-based short-baseline neutrino experiments;

• Section 2.3 discusses the constraints on leptonic CP-violation in (3+2) sterile

neutrino models obtained from short-baseline neutrino experiments, and impli-

cations for the interpretation of the forthcoming MiniBooNE results on νµ → νe

and (possibly) ν̄µ → ν̄e oscillations.

30
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2.1 Supernova Neutrino Experiments and the Neu-

trino Mass Hierarchy

The very dense matter environment traversed by supernova neutrinos affects how

neutrinos are believed to oscillate among flavors: in this case, the neutrino mass hi-

erarchy, that is the ordering of the neutrino mass eigenvalues, plays a role. Under

certain approximations, it is possible to analytically derive the probability for muon

and tau neutrinos produced in supernova explosions to be detected as electron neu-

trinos on Earth, as a function of the neutrino mass hierarchy and mixing parameters.

Detailed simulation models of the neutrino transport in core-collapse supernova

explosions indicate different energy distributions for the electron, muon, and tau neu-

trino flavors at their surfaces of last scattering.

Electron neutrinos originated from the SN1987A supernova explosion that oc-

curred in the neighborhood of our galaxy have been observed on Earth. Therefore,

the observation of the electron neutrino energy spectrum on Earth provides (model-

dependent) constraints on muon/tau neutrino transitions to electron neutrinos, and

therefore on the neutrino mass hierarchy and mixings.

The following paper (see Ref. [69] and references therein), written in collabora-

tion with J. Conrad, discusses these constraints for various sterile neutrino models.

The main result of the paper is that several sterile neutrino mass hierarchies are

strongly disfavored, based on the SN1987A observations, providing an experimental

way to constrain the large “phase space” of sterile neutrino models that are present

in the literature.



Supernova neutrinos and the LSND evidence for neutrino oscillations

Michel Sorel* and Janet Conrad†

Department of Physics, Columbia University, New York, New York 10027
~Received 15 December 2001; published 23 August 2002!

The observation of then̄e energy spectrum from a supernova burst can provide constraints on neutrino
oscillations. We derive formulas for adiabatic oscillations of supernova antineutrinos for a variety of 3- and
4-neutrino mixing schemes and mass hierarchies which are consistent with the Liquid Scintillation Neutrino

Detector~LSND! evidence forn̄m→ n̄e oscillations. Finally, we explore the constraints on these models and

LSND given by the supernova SN 1987An̄e’s observed by the Kamiokande-2 and IMB-3 detectors.

DOI: 10.1103/PhysRevD.66.033009 PACS number~s!: 14.60.Pq, 14.60.St, 26.50.1x, 97.60.Bw

I. INTRODUCTION

In recent years, the treatment of neutrino transport in the
environment of a core-collapse supernova~SN! explosion
has improved to the point of making realistic predictions on
the observables for neutrinos reaching the Earth@1–4#. Of
particular interest for this paper are the average energies at
the neutrinospheres, i.e. the surfaces of last scattering for the
neutrinos, estimated to be 10–13 MeV forne , 14–17 MeV

for n̄e , 23–27 MeV fornm,t ,n̄m,t @2,4#.
The differences in temperatures between the various neu-

trino flavors can be qualitatively understood. Heavy-lepton
neutrinos can interact only via neutral current~NC! pro-
cesses, the main contribution to their transport opacity com-
ing from neutrino-nucleon scattering, which dominates over
neutrino-electron scattering. In addition to this same NC con-

tribution, the transport opacity forne’s andn̄e’s depends also
on the charged current~CC! absorptionsne1n→p1e2 and

n̄e1p→n1e1, respectively. Therefore, thene- and

n̄e-spheres are located at larger radii with respect to the other
neutrinospheres, that is at lower densities and lower tempera-
tures. Moreover, in a neutron-rich environment,ne1n→p

1e2 dominates overn̄e1p→n1e1: the emergentne’s
originate from layers farther outside the center of the star

compared ton̄e’s, therefore at lower temperatures. The total
energy released in a SN explosion is approximately equipar-
titioned between the different neutrino and antineutrino fla-
vors @3#.

The above predictions can be confronted with the obser-
vation of the supernovan̄e energy spectrum detected on
Earth. Neutrino oscillations are expected to modify the spec-
trum since^En̄e

&,^En̄m ,n̄t
&. The energy dependence of the

neutrino cross section in the detector material, approximately
sn̄ep}(En̄e

21.29 MeV)2 @5#, helps in making then̄e energy
spectrum distortion a sensitive experimental probe to neu-
trino oscillations. This is because higher energy neutrinos
interact significantly more than lower energy ones.

We show that the extent of the spectrum modification de-
pends crucially on the specifics of the neutrino mixing
scheme and on the neutrino mass hierarchy under consider-
ation, and we derive the relevant formulas assuming an adia-
batic propagation for the antineutrinos in the supernova en-
vironment. Antineutrinos propagate adiabatically if the
varying matter density they encounter changes slowly
enough so that transitions between local~instantaneous!
Hamiltonian eigenstates can be neglected throughout the en-
tire antineutrino propagation. So far, neutrinos from one su-
pernova have been detected and their energy measured: SN
1987A was observed by the Kamiokande-2 and IMB-3 de-
tectors. The overall 20 events seen by those two detectors
have all been interpreted asn̄e interactions@6#. We examine
the constraint of such observations on the LSND allowed
region of n̄m→ n̄e oscillations@7#, for various neutrino mass
and mixing models. If the LSND evidence is confirmed by
the MiniBooNE experiment@8#, several models can be ex-
cluded or constrained on the basis of the observations of the
supernova SN 1987A and possibly future supernovæ.

II. ADIABATIC OSCILLATIONS AND NEUTRINO MIXING
SCHEMES

A. n̄e energy spectrum and the permutation factor

In the presence of neutrino oscillations, then̄e flux reach-
ing the Earth,F n̄e

, can be different from the primary flux at

the neutrinosphere,F n̄e

0 . We will assume that, at production,

the energy of active antineutrinos is equally divided into the
three active flavors, i.e. that*0

`dEn̄a
En̄a

F n̄a

0 has the same

numerical value fora5e,m,t. Moreover, we will also con-
sider neutrino mixing models where the three active neutrino
species are augmented by a fourth sterile neutrino with no
standard weak couplings: in those cases, we will assume that
the sterile component is negligible at production.

The neutrino flux reaching the Earth is

F n̄e
5~pm→e1pt→e!F n̄m

0
1pe→eF n̄e

0

}@pFn̄m

0
1~12p!F n̄e

0
# ~1!

where we have defined thepermutation factor pas
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p5
pm→e1pt→e

pm→e1pt→e1pe→e
~2!

and pm,t,e→e are the probabilities for an̄m , n̄t , n̄e respec-
tively at the neutrinosphere to oscillate into an̄e . In Eqs.~1!,
~2!, we have assumed thatp is energy-independent~as will
be justified later!, and that̂ En̄m

&5^En̄t
&. In Eq. ~1!, we ne-

glect the ~energy-independent! proportionality factor since
we will not deal with event rates, but only with neutrino
energy distributions.

B. Neutrino propagation in the adiabatic approximation

In vacuum, the Hamiltonian that governs neutrino propa-
gation is diagonal in the mass eigenstate basisun i&:

~H0! i j [^n i uH0un j&5Eid i j . ~3!

If the neutrinos all have the same relativistic momentum
p, their energiesEi differ only by a term proportional to their
squared-mass differences, sinceEi.p1mi

2/2p. If U is the
unitary mixing matrix that relates the flavor eigenstatesuna&
to the mass eigenstates viauna&5Ua i un i&, the elements of
the vacuum Hamiltonian in the flavor basis are given by@9#:

~H0!ab5Ua i* Ub i

mi
2

2p
~4!

where we have neglected the contributionpdab in (H0)ab ,
which is irrelevant for neutrino oscillations.

In matter, n̄e’s undergo coherent charged current~CC!
forward-scattering from electrons, and all active flavor an-
tineutrinos coherent neutral current~NC! forward-scattering
from electrons, protons, and neutrons in the medium. These
processes give rise to an interaction potentialV5VW1VZ ,
which is diagonal in the flavor basis and proportional to the
matter densityr:

~V!ab5Aa

GFr

mN
dab ~5!

whereAa is a proportionality constant, in general different
for a5e, m, t, or s, GF the Fermi constant, andmN the
nucleon mass. The relevant Hamiltonian for neutrino propa-
gation in matter is thereforeH[H01V.

At the neutrinosphere, the densityr is so high
(;1012 g/cm3 @1#! that the interaction potential dominates
over the vacuum Hamiltonian, so that the propagation eigen-
states coincide with the flavor eigenstates. As the propaga-
tion eigenstates free-stream outwards, toward regions of
lower density, their flavor composition changes, ultimately
reaching the flavor composition of the mass eigenstates in
the vacuum. Given that the neutrinos escape the SN as mass
eigenstates, no further flavor oscillations occur on their path
to the Earth.

More specifically, making use of the adiabatic approxima-
tion and of the fact that no energy-level crossing is permit-
ted, the flavor eigenstate at the neutrinosphere with the maxi-
mum interaction potential reaches Earth as the mass

eigenstate with the biggest neutrino mass. In general, the
energy level order is maintained throughout the neutrino
propagation in the SN ejecta. This is illustrated in Table I for
three neutrinos in the row labeled ‘‘normal (11111),’’
where we have takenAg.Ab.Aa andm3.m2.m1.

For example, the probability for an̄a to emerge from the
SN environment as an̄b is given by

pa→b5 z^n̄buUevolun̄a& z25 z^Ub i n̄ i uUevolun̄a& z2

5uUb i* d i ,1u25uUb1u2 ~6!

whereUevol is the adiabatic evolution operator. In Eq.~6!,
we have used Table I to get

^n̄ i uUevolun̄a&5d i ,1. ~7!

TABLE I. Adiabatic neutrino propagation in the SN ejecta for
the neutrino mixing models considered.

Model Hierarchy Propagation

Normal ~11111! m3.m2.m1 n̄g→ n̄3

n̄b→ n̄2

n̄a→ n̄1

Normal ~111! m2@m1 n̄m→ n̄2

n̄e→ n̄1

LSND-inverted~111! m1@m2 n̄m→ n̄1

n̄e→ n̄2

Normal ~211! m3.m2@m1 n̄m→ n̄3

n̄t→ n̄2

n̄e→ n̄1

LSND-inverted~211! m1@m3.m2 n̄m→ n̄1

n̄t→ n̄3

n̄e→ n̄2

Normal ~212! m3.m2@m1.m0 n̄m→ n̄3

n̄t→ n̄2

n̄s→ n̄1

n̄e→ n̄0

LSND-inverted~212! m1.m0@m3.m2 n̄m→ n̄1

n̄t→ n̄0

n̄s→ n̄3

n̄e→ n̄2

Normal ~311! m4@m3.m2.m1 n̄m→ n̄4

n̄t→ n̄3

n̄s→ n̄2

n̄e→ n̄1

LSND-inverted~311! m3.m2.m1@m4 n̄m→ n̄3

n̄t→ n̄2

n̄s→ n̄1

n̄e→ n̄4
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This result can be immediately generalized to any number
of antineutrino generations. Also, as long as the adiabatic
approximation is satisfied, the formula does not depend on
the specific dynamics for the neutrino propagation, for ex-
ample on the number and position in the SN environment of
Mikheyev-Smirnov-Wolfenstein~MSW! resonances. We will
comment more on the validity of the adiabatic approximation
in the next section.

In this paper, we consider three or four flavor compo-
nents, including a sterile one. At tree-level, the proportional-
ity factors Aa in the interaction potential for neutral matter
are @9,10#

A5H ~123Ye!/A2 for n̄e ,

~12Ye!/A2 for n̄m ,n̄t ,

0 for n̄s ,

~8!

whereYe is the electron fraction per nucleon. Following the
assumptions of@10,11#, we use Ye.(11^En̄e

&/^Ene
&)21

.1/3 at the neutrinosphere. Considering also one-loop elec-
troweak radiative corrections, a difference in then̄m and n̄t
interaction potentials of magnitude (Am2At)/Am;1024 ap-
pears due to the difference in the charged lepton masses
@12,13#. At the neutrinosphere, this second-order effect in the
interaction potential dominates over the vacuum Hamiltonian
terms ~as long asumi

22mj
2u,10 eV2 for all i , j ), and re-

moves the n̄m2 n̄t degeneracy. Therefore, for the an-
tineutrino channel considered here, we take

Am.At.As.Ae . ~9!

For the neutrino channel, one should substituteA→2A in
Eq. ~8!, and the order in Eq.~9! would be inverted.

Therefore, given a specific neutrino mass and mixing
model, the permutation factor can be easily evaluated in the
adiabatic approximation, and its numerical value does not
depend on the neutrino energy. We will comment on possible
energy-dependent Earth matter effects in the next section. In
practice, one proceeds backwards: given a certain measured
value of p, it is possible to constrain possible models for
neutrino oscillations. This approach is used for example in

@13# to constrain models explaining the solar and atmo-
spheric neutrino data; in this paper, we focus on 3 and
4-neutrino models explaining the Liquid Scintillation Neu-
trino Detector~LSND! data.

C. Possible mixing schemes

The results for then̄m , n̄t , n̄e→ n̄e adiabatic oscillation
probabilities, the permutation factorp, and the LSND oscil-
lation amplitude sin22q as a function of the mixing param-
eters andp for the eight possible mass and mixing schemes
considered below are given in Table II. The mass hierarchy
and the adiabatic propagation of the neutrino eigenstates for
these mixing schemes are depicted in Table I.

The simplest possible mixing scheme is a (111) model
explaining onlyn̄m→ n̄e LSND oscillations in vacuum, and
not the atmospheric or solar oscillations:

S n̄e

n̄m
D 5S cosq sinq

2sinq cosq
D S n̄1

n̄2
D , ~10!

where the mixing angleq can assume any value in the range
0,q,p/4.

We consider a (211) model motivated, for example, by
CPT-violating scenarios~see, e.g.@14#!, in which atmo-
spheric and LSND oscillations in the antineutrino channel
are obtained via the mixing@15#:

S n̄e

n̄m

n̄t

D 5S 1 2
1

2
a 2

A3

2
a

a
1

2

A3

2

0 2
A3

2

1

2

D S n̄1

n̄2

n̄3

D . ~11!

The matrix in Eq.~11! is chosen to ensure largen̄m→ n̄t
mixing for atmospheric neutrinos (sin22qatm53/4), while
the LSND n̄m→ n̄e mixing is fixed by the parametera
(sin22qLSND54a2).

The most popular models which explain the solar, atmo-
spheric and LSND signatures~and the null results obtained

TABLE II. Results on the probabilitiespm,t,e→e for a n̄m,t,e to emerge from the SN as an̄e , the
permutation factorp of Eq. 2, and the LSND oscillation amplitude sin22qLSND, for the various neutrino
mixing schemes considered.

Model Mixing pm→e pt→e pe→e p sin22qLSND

Normal ~111! Eq. ~10! sin2q 0 cos2q sin2q sin22q54p(12p)
LSND-inverted~111! Eq. ~10! cos2q 0 sin2q cos2q sin22q54p(12p)
Normal ~211! Eq. ~11! 3

4 a2 1
4 a2 1 a2/(11a2) 4a254p/(12p)

LSND-inverted~211! Eq. ~11! 1 3
4 a2 1

4 a2 (11
3
4 a2)/(11a2) 4a254(12p)/(p2

3
4 )

Normal ~212! Eq. ~14! b2 b2 1
2 4b2/(114b2) 8b252p/(12p)

LSND-inverted~212! Eq. ~14! 1
2

1
2 b2 1/(11b2) 8b258(12p)/p

Normal ~311! Eq. ~15! g2 0 1
2 2g2/(112g2) 4g2d252d2p/(12p)

LSND-inverted~311! Eq. ~15! 0 1
2 g2 1/(112g2) 4g2d252d2(12p)/p
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by other experiments! via neutrino oscillations invoke the
existence of a sterile neutrinon̄s . One example of a (2
12) model is the following, which is taken from@16#:

S n̄s

n̄e

n̄m

n̄t

D 51
1

A2

1

A2
0 0

2
1

A2

1

A2
b b

b 2b
1

A2

1

A2

0 0 2
1

A2

1

A2

2 S n̄0

n̄1

n̄2

n̄3

D ~12!

where one pair of nearly degenerate mass eigenstates has
maximal ne→ns mixing for solar neutrinos and the other
pair has maximalnm→nt mixing for atmospheric neutrinos.
Small inter-doublet mixings through theb parameter accom-
modate the LSND result (sin2qLSND58b2).

Recent experimental results@17# show that purene→ns
solar oscillations are excluded at high significance. We there-
fore consider a more general (212) scenario, in which solar
neutrinos can undergo any combination ofne→ns and ne
→nt oscillations, while atmospheric neutrinos can undergo
any combination ofnm→nt and nm→ns oscillations. We
follow the procedure in@18# to obtain this more general mix-
ing starting from Eq.~12!, by substituting the (n̄s ,n̄t) states
with the rotated states (n̄s8 ,n̄t8):

S n̄s8

n̄t8
D 5S cosws sinws

2sinws cosws
D S n̄s

n̄t
D ~13!

where the rotation anglews fixes the sterile component in the
atmospheric doublet (0,ws,p/2). Equation~12! then be-
comes

S n̄s

n̄e

n̄m

n̄t

D 51
cosws

A2

cosws

A2

sinws

A2
2

sinws

A2

2
1

A2

1

A2
b b

b 2b
1

A2

1

A2

sinws

A2

sinws

A2
2

cosws

A2

cosws

A2

2 S n̄0

n̄1

n̄2

n̄3

D
~14!

which contains Eq.~12! in the specific casews50. We note
that the LSND oscillation amplitude formula sin22qLSND
58b2 holds also for the more general case of Eq.~14!, and
that our results are independent of the value ofws ~see Table
II !.

Another possible 4-neutrino model has a (311) hierar-
chy; as an example for this model, here we consider the
following mixing, which is also taken from@16#:

S n̄e

n̄m

n̄t

n̄s

D 51
1

A2

1

A2
0 g

2
1

2

1

2

1

A2
d

1

2
2

1

2

1

A2
0

1

2
d2

1

A2
g 2

1

2
d2

1

A2
g 2

1

A2
d 1

2
3S n̄1

n̄2

n̄3

n̄4

D ~15!

where the solar and atmospheric oscillations are approxi-
mately described by oscillations of three active neutrinos,
and the LSND result by a coupling ofn̄m and n̄e through
small mixings with n̄s that has a mass eigenvalue widely
separated from the others (sin22qLSND54g2d2). For the (3
11) scenario, the constraint given by the permutation prob-
ability p is not sufficient to determine the LSND oscillation
amplitude sin22qLSND. Therefore, the constraint onuUm4u2

5d2 given by the CDHS and Super-K experiments will also
be used, as explained later.

We should note that the mixing matrices defined in Eqs.
~10!–~15! are approximations in the sense that the matrices
are unitary only up to orderO(a,b,g,d). These are the pa-
rameters in the mixings responsible for LSND-type oscilla-
tions, which we let float for our analysis, but we know they
are small.

In order to determine the permutation factor for the mix-
ing models, we also need to specify the neutrino mass hier-
archy. In this paper, we consider for each mixing model both
the cases of ‘‘normal’’ and ‘‘LSND-inverted’’ mass hierar-
chies. By ‘‘normal’’ hierarchy, here we mean thatmi.mj for
i . j , wheremi is the mass eigenvalue for theun̄ i& state. We
define the ‘‘LSND-inverted’’ hierarchies as the ones obtained
substitutingDmLSND→2DmLSND in the normal hierarchies,
without changing the hierarchy of the eventual solar and at-
mospheric splittings~see Table I!; DmLSND is the neutrino
mass difference responsible for LSND oscillations.

A common feature to all the mixing schemes is apparent
in Table II. In the adiabatic approximation, normal mass hi-
erarchies predict small permutation factors, while an almost
complete permutation would be present for LSND-inverted
hierarchies.

Given the specific neutrino mixing models considered
here, we can now partially address the question whether the
adiabatic approximation is applicable in this context. At a
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resonance, where the nonadiabaticity is maximal, this is a
good approximation if the width of the resonance region is
large compared with the local neutrino oscillation length.
The width of the resonance is, in turn, determined by the
characteristic length scale of the radial matter density varia-
tions at the resonance. While there are reliable models for the
matter density profile of the progenitor star, there are still
uncertainties on the profile seen by neutrinos in their free-
streaming propagation.

It is now thought that neutrino heating of the proto-
neutron star mantle drives the supernova explosion, which
would happen with a;1 s delay after the creation of the
shock-wave, ultimately responsible for the explosion; during
this delay, the shock-wave would be stalled at a radius of
;200 km from the neutron star, corresponding to a density
r;10921010 g/cm3 @1#. Therefore, the density profile in the
proximity of the stalled shock-wave, which is difficult to
model reliably, is a potential site for nonadiabatic oscilla-
tions.

In Fig. 1 we show the energy splittings between the local
neutrino energy eigenvaluesEi , as a function of matter den-
sity, for all eight neutrino models considered here. For an

n-neutrino model, we plotEi ,i 11[Ei2Ei 11, where i
51, . . . ,n21; the eigenvalues are ordered such thatE1
.E2. . . . .En . Clearly, a resonance corresponds to a local
minimum in one of the curves. As can be seen from Fig. 1,
all the resonances@except the inconsequential one in Fig.
1~f! betweenn̄m and n̄t @19## lie at densities well below the
stalled shock-wave density ofr;10921010 g/cm3. There-
fore, the impact of level crossing between propagation eigen-
states is likely to be small even where the neutrinos encoun-
ter the shock-wave.

If the SN neutrinos cross the Earth on their way to the
detector, as for example happened for the SN 1987An̄e’s
detected by the Kamiokande-2 and IMB-3 detectors, it is
also necessary to evaluate the importance of Earth matter
effects in the neutrino propagation. Clearly, for neutrino os-
cillation models where no solar splitting is involved@for ex-
ample the (111) and (211) models in this paper#, this
effect is negligible. In the models where such a splitting is
allowed @i.e. the (212) and (311) models considered
here#, the situation is more complicated. However, the Earth
matter effects have been shown to be small in this case as
well for a large fraction of the SNn̄e energy spectrum~below
.40 MeV) @13,20#, and for the sake of simplicity will not be
considered further.

III. CONSTRAINTS ON LSND FROM SN 1987A
OBSERVATIONS

Twenty n̄e events from the supernova SN 1987A were
observed by the Kamiokande-2~Kam-2! and IMB-3 detec-
tors. Kam-2 saw 12 events with an average energy of
^Edet&514.7 MeV, IMB-3 ~which had a higher energy
threshold than Kam-2! detected 8 events witĥ Edet&
531.9 MeV @21#.

From a comparison of the measured energy spectra (F n̄e
)

with theoretical models of neutrino emission (F n̄e

0 andF n̄m

0 ),

it is possible to infer the permutation factorp in Eq. ~1!. SN
1987A observations are consistent with no-oscillations~i.e.
p50). In Appendix A, we derive a conservative upper
bound on p of p,0.22 at 99% C.L., by applying a
Kholmogorov-Smirnov test on the joint Kam-IMB dataset
and a range of supernova neutrino emission models.

One important result of our analysis is immediately ap-
parent from the values of the permutation factorsp as a func-
tion of the mixing parameters in Table II, and from the fact
that the value ofp inferred from SN 1987A data has to be
less than 0.22 at 99% C.L. The four mixing schemes consid-
ered, explaining the LSND effect via a LSND-inverted neu-
trino mass hierarchy, are all incompatible with SN 1987A
data.

We now consider the normal hierarchy cases. For the (1
11), (211) and (212) models with the mixings of Eqs.
~10!–~12!, the bound on the permutation factorp unambig-
ously determines the constraint on the LSND oscillation am-
plitude sin22qLSND ~see Table II!. At 99% C.L., SN 1987A
data provide no constraints on the (211) model, and a con-
straint which is weaker than existing bounds from the accel-

FIG. 1. Splittings between energy eigenvalues versus matter
density r for various neutrino mass and mixing models. Solid,
dashed, dotted lines show the splittingsE12, E23, E34, respectively
~see text!. The local minima correspond to MSW-resonances.
Model ~a! normal~111!; ~b! inverted~111!; ~c! normal~211!; ~d!
inverted ~211!; ~e! normal ~212!; ~f! inverted ~212!; ~g! normal

~311!; ~h! inverted~311!. Apart from the inconsequentialn̄m↔ n̄t

one in~f!, no MSW-resonances occur before the antineutrinos reach
the stalled shock-wave~hatched area!.
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erator experiment KARMEN@23# and the reactor experiment
Bugey @24,25# for the (111) and (212) models@see Fig.
2~a!#. Therefore, these models are compatible with the SN
1987A data.

As already mentioned, for the (311) model, the permu-
tation factor does not fully determine the LSND oscillation
amplitude: sin22qLSND depends not only onp, but also on
uUm4u25d2. Here we use theDmLSND

2 -dependent constraints
on d2 from the nm-disappearance experiments CDHS~for
DmLSND

2 .0.3 eV2) and Super-K~for DmLSND
2 ,0.3 eV2)

@25#. Moreover, another complication arises in evaluating ex-
clusion regions for~311! models: given the 99% C.L. upper
bounds ong25uUe4u2 from SN 1987A andd25uUm4

2 u from
CDHS and Super-K, what is the 99% C.L. upper bound on
sin22qLSND54g2d2? We follow the method described in@26#
to estimate this bound. The same method is applied to esti-
mate the 99% C.L. upper limit on sin22qLSND coming from
Bugey ~for g2) and CDHS and Super-K~for d2), that is
without using the SN 1987A data. The results for the (3
11) model with normal neutrino mass hierarchy and mixing
given by Eq.~15! are shown in Fig. 2~b!. Also for this model,
we find that existing constraints~the Bugey constraint ond2,
in this case! are stronger than the SN 1987A one.

Table III summarizes the SN 1987A constraints obtained
in this paper on the LSND allowed region, for the various
neutrino mass and mixing models considered.

IV. CONCLUSIONS

We have investigated the effect that 3- and 4-neutrino
oscillation schemes would have in modifying the energy
spectrum of supernovan̄e’s. Throughout the paper, we apply
the adiabatic approximation for the antineutrino propagation
in the supernova environment and neglect Earth matter ef-
fects. Moreover, we have used our results to test the compat-

ibility between the SN 1987A data and the LSND evidence

for n̄m→ n̄e oscillations.
We have provided specific relations for the permutation

factor, which gives the admixture of a higher energy flux to

the original n̄e flux at production fromn̄m ,n̄t→ n̄e oscilla-
tions, for various neutrino mass and mixing models. The per-
mutation factor may be measurable with good accuracy in
future supernova experiments.

Based on SN 1987A data only, which seem to indicate a
small ~if nonzero! value for the permutation factor, we are
able to exclude all of the four models considered which
would explain the LSND signal via a ‘‘LSND-inverted’’ neu-
trino mass hierarchy, as defined in the text. For the normal
mass hierarchy schemes considered, SN 1987A data do not
provide any stronger constraints on the LSND allowed re-
gion for oscillations than those already obtained with reactor,
accelerator and atmospheric neutrinos; additional experimen-
tal input is necessary to unambiguously discern the neutrino
mass and mixing properties. Undoubtedly, the detection of

TABLE III. Summary of the SN 1987A constraints on the
LSND allowed region, for the various models considered in this
paper; see Fig. 2 also.

Model SN 1987A constraint on
LSND region (99% C.L.!

Normal (111) partially excluded@Fig. 2~a!#

LSND-inverted (111) excluded
Normal (211) unconstrained
LSND-inverted (211) excluded
Normal (212) partially excluded@Fig. 2~a!#

LSND-inverted (212) excluded
Normal (311) partially excluded@Fig. 2~b!#

LSND-inverted (311) excluded

FIG. 2. 99% C.L. LSND allowed region@7# and 99% C.L. exclusion regions for the neutrino mixing schemes considered in the text and
with normal mass hierarchy. The exclusion regions are estimated as in@26#. ~a! shows the exclusion regions for the (111), (211) and
(212) models,~b! for the (311) model. The exclusion regions refer to experimental data from the following experiments.~a! Dotted line:
KARMEN; dashed line: Bugey; dark solid line: SN 1987A for the (212) model; light solid line: SN 1987 for the (111) model; SN 1987A
data provide no constraints at 99% C.L. for the (211) model.~b! Dotted line: KARMEN; dashed line: Bugey, CDHS and Super-K; solid
line: SN 1987A, CDHS and Super-K.
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supernova neutrinos by present or near-term experiments
@27# would prove very useful in this respect.
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APPENDIX: UPPER BOUNDS ON THE PERMUTATION
FACTOR FROM SN 1987A DATA

In this appendix, we discuss the statistical methodology
and the physics assumptions used to estimate the upper
bound on the permutation factorp quoted in the text,p
,0.22 at 99% C.L. We use the same statistical methodology
as in @22#, that is we use the Kholmogorov-Smirnov test on
the joint Kam-IMB dataset to derive the upper bound. Most
of the physics assumptions are identical to those in@28#.

The expected energy spectrum for the positrons, observed
in the Kamiokande and IMB detectors via the reactionn̄ep
→e1n, is

ni~Edet!5
Np,i

4pD2E0

`

dE1Pi~Edet ,E1!

3h0,i~E1!sn̄ep~E11Q!F n̄e
~E11Q!

~A1!

where i refers to either Kam or IMB,Np,i is the number of
target protons in the detectors,D the distance between the
Large Magellanic Cloud and the Earth,Edet (E1) is the de-
tected~true! positron energy,Q[mn2mp51.29 MeV.En̄e

2E1 , Pi(Edet ,E1), and h0,i(E1) the energy resolution
functions and efficiency curves taken from@28#, sn̄ep(E1

1Q)}E1
2 the neutrino interaction cross section taken from

@5# ~neglecting nuclear recoil!, and finallyF n̄e
(E11Q) the

neutrino flux at the detector taken from Eq.~1!. We assume
‘‘unpinched’’ Fermi-Dirac distributions for the fluxesF n̄a

0 ,

a5e,m, appearing in Eq.~1!:

F n̄a

0
~E!}

E2

^En̄a
&Ta

3~eE/Ta11!
~A2!

where^En̄a
&.3.15Ta at the denominator ensures energy eq-

uipartition.
The cumulative distribution function used for the

Kholmogorov-Smirnov test is

F~Edet!5E
0

Edet
dE@nKam~E!1nIMB~E!#. ~A3!

Figure 3 shows the upper bound on the permutation factor
p obtained from SN 1987A data, at 99% C.L., as a function
of the average energies^En̄e

&, ^En̄m
&. As expected, the bound

becomes more stringent for supernova models in which the
neutrino average energies are higher. SN 1987A data are in-
compatible at 99% C.L. with all supernova neutrino models
predicting^En̄e

&.16.6 MeV, for all values ofp and ^En̄m
&.

We adopt a conservative approach, and quote as the upper
bound onp the largest value for supernova neutrino models
in the range 14,^En̄e

&,17 MeV, 23,^En̄m
&,27 MeV,

that is the one corresponding tôEn̄e
&514 MeV, ^En̄m

&
523 MeV ~cross in Fig. 3!.
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40

2.2 Short-Baseline Neutrino Experiments and the

Number of Neutrino Species

As discussed in the previous Chapter, if the LSND observation of the ν̄e excess in a

ν̄µ neutrino beam is to be interpreted as ν̄µ → ν̄e oscillations, then additional, ster-

ile neutrino species may be required to explain all of the experimental evidence on

neutrino oscillations. Within these assumptions, short-baseline neutrino oscillation

experiments provide constraints on the number of light sterile neutrino species, their

masses and their mixings.

In the following paper (see Ref. [70] and references therein), written in collab-

oration with J. Conrad and M. Shaevitz, the constraints on sterile neutrino models

from a combined analysis of several accelerator-based and reactor-based searches for

νµ → ν6µ, νe → ν6e, and νµ → νe oscillations at short baselines are presented. Neutrino

models involving both one and two additional sterile neutrinos are studied. The first

main result of this analysis is that (3+2) sterile neutrino models are significantly

favored over (3+1) models. The second main result of the analysis is an estimate of

the most likely and allowed values for the neutrino mass splittings and mixing matrix

elements affecting the three oscillation channels listed above at short baselines, for

both (3+1) and (3+2) models.

These results provide some guidance for present and future short-baseline oscilla-

tion searches, as well as for neutrino model building. In particular, this phenomenolog-

ical work is of direct relevance to the MiniBooNE νµ disappearance analysis presented

later in this thesis, and shows that sterile neutrino models may predict large (up to

∼30%) νµ disappearance in the ∆m2 range probed by the MiniBooNE experiment.
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I. INTRODUCTION

There currently exist three experimental signatures
for neutrino oscillations. The two signatures seen origi-
nally in solar and atmospheric neutrinos have been veri-
fied by several experiments, including experiments
carried out with accelerator and nuclear reactor sources.
The results on atmospheric neutrinos can be explained by
�� disappearance due to oscillations [1–3], while those
on solar neutrinos can be explained by �e oscillations
[4,5]. The third signature is ��e appearance in a ��� beam,
observed by the short-baseline, accelerator-based LSND
experiment at Los Alamos [6]. This signature is strong
from a statistical point of view, being a 3:8� excess, but
further confirmation by an independent experiment is
necessary. The MiniBooNE experiment at Fermilab
will be able to confirm or refute the LSND signature in
the near future, with an experimental setup provid-
ing different systematics and higher statistics than
LSND [7].

Taken at face value, the three experimental signatures
point to three independent mass splittings. Three neutrino
masses do not appear to be able to explain all of the three
signatures [8,9] (see, however, [10]). One way to solve this
puzzle is to introduce different mass spectra for the
neutrino and antineutrino sector, thereby requiring CPT
violation but no extra neutrino generations [11]. Another
possibility is to add additional neutrinos with no standard
weak couplings, often called ‘‘sterile neutrinos.’’

In this paper we assume CPT and CP invariance, and
we explore the possibility of adding one- or two-neutrino
generations beyond the three active flavors assumed by
the Standard Model. We focus on extensions of the neu-
trino sector where the addition of fourth and fifth mass

eigenstates are responsible for the high �m2 LSND os-
cillations, and the three lower mass states explain solar
and atmospheric oscillations. When only one sterile neu-
trino is added, these models are labeled as �3� 1�. The
flavor content of the four-neutrino mass eigenstates for
these models is schematically shown in Fig. 1(a). The �3�
1� hierarchy in Fig. 1(a) is as opposed to the �2� 2�
hierarchy, where the solar and atmospheric mass split-
tings are separated from each other by the LSND �m2.
The �2� 2� models require a different global analysis
from the one discussed in this paper. The simplest �2�
2� models appear to be only marginally consistent with
neutrino oscillations data [8,12], even though more gen-
eral �2� 2� mass and mixing scenarios might represent a
viable solution to explain solar, atmospheric, and LSND
oscillations [13].

The �3� 1� models are motivated by the criterion of
simplicity in physics, introducing the most minimal ex-
tension to the Standard Model that explains the experi-
mental evidence. However, theories invoking sterile
neutrinos to explain the origin of neutrino masses do
not necessarily require only one sterile neutrino.
Indeed, many popular realizations of the see-saw mecha-
nism introduce three right-handed neutrino fields [14–
16]. In particular, �3� 2� neutrino mass and mixing
models can be obtained in several see-saw mechanisms
[17]. From the phenomenological point of view, it is our
opinion that two- and three-sterile neutrino models
should also be considered and confronted with existing
experimental results. In this paper, we consider the results
from the short-baseline experiments Bugey [18], CCFR84
[19], CDHS [20], CHOOZ [21], KARMEN [22], LSND
[6], and NOMAD [23], and examine how well �3� 1� and
�3� 2� models agree with data. A schematic diagram for
�3� 2� models is shown in Fig. 1(b). We do not consider
�3� 3� models in this paper. From our initial studies, we
believe that the phenomenology of a �3� 3� model is
similar to a �3� 2� model.
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The paper is organized as follows. In Sec. II, we
specify the neutrino oscillations formalism used in this
analysis to describe �3� 1� and �3� 2� short-baseline
oscillations. In Sec. III and IV, we present the results
obtained for the �3� 1� and �3� 2� models, respectively.
For both models, we first derive the level of compatibility
between the null short-baseline (NSBL) experiments and
LSND. Second, we perform a combined analysis of all
seven short-baseline experiments (including LSND) to
derive the preferred regions in neutrino mass and mixing
parameter space. In Sec.V, we discuss four statistical tests
to compare the �3� 1� and �3� 2� hypotheses. In Sec.VI,
we briefly mention other experimental constraints on
�3� 1� and �3� 2� models. In the Appendix, we describe
the physics and statistical assumptions used in the analy-
sis to describe the short-baseline experiments.

II. NEUTRINO OSCILLATIONS FORMALISM

Under the assumptions of CP and CPT invariance, the
probability for a neutrino, produced with flavor � and
energy E, to be detected as a neutrino of flavor 
 after
travelling a distance L, is [24]

P��� ! �
� � �
 � 4
Xn

j>i

U�;jU
;jU�;iU
;isin
2xji; (1)

where � � e;�; �; s (s being the sterile flavor); U is the
unitary neutrino mixing matrix; xji � 1:27�m2

jiL=E;
�m2

ji � m2
j �m2

i ; and n is the number of neutrino gen-
erations. Neglecting CP-violating phases, there are in
general �n� 1� independent mass splittings, and n2 �
n� n�n� 1�=2 independent mixing matrix elements.
The situation simplifies considerably by considering
short-baseline (SBL) data only. In this case, it is a good
approximation to assume x21 � x32 � 0, and only �n� 3�
independent mass splittings are present. Moreover, given
the set of SBL experiments considered, the number of

mixing matrix elements probed is only 2�n� 3�, as we
show now for the �3� 1� and �3� 2� cases.

For �3� 1� models, n � 4, and only one mass splitting
�m2 � �m2

41 ’ �m
2
42 ’ �m

2
43 appears in the oscillation

formula: this is sometimes referred to as to the ‘‘quasi two
neutrino approximation,’’ or ‘‘one mass scale domi-
nance’’ [25]. Using the unitarity properties of the mixing
matrix, we can rewrite Eq. (1) for �3� 1� models in a
more convenient way

P��� ! �
� � �
 � 4U�4U
4��
 �U�4U
4�sin
2x41;

(2)

which depends on the mass splitting (�m2
41) and mixing

parameters (U�4; U
4) of the fourth generation only.
Since the two neutrino approximation is satisfied in the
�3� 1� case, we can express Eq. (2) in the usual forms

P��� ! �
� � sin22��
sin
2x41; � � 
; (3)

P��� ! ��� � 1� sin22���sin2x41; (4)

where Eq. (3) applies to an oscillation appearance mea-
surement, Eq. (4) to a disappearance measurement.

In this paper, we use the data from the Bugey, CCFR84,
CDHS, CHOOZ, KARMEN, LSND, and NOMAD ex-
periments. Bugey and CHOOZ data constrain �e disap-
pearance; CCFR84 and CDHS data constrain ��
disappearance; and KARMEN, LSND, and NOMAD
data constrain �u ! �e oscillations. Therefore, from
Eqs. (2)–(4), the experiments constrain the following
combinations of �3� 1� mixing parameters:

(i) Bugey, CHOOZ: sin22�ee � 4U2
e4�1�U2

e4�;
(ii) CCFR84, CDHS: sin22��� � 4U2

�4�1�U2
�4�;

(iii) KARMEN, LSND, NOMAD: sin22��e �
4U2

e4U
2
�4.

In �3� 1� models, the tension between the experimental
results comes about because Bugey, CHOOZ, CCFR84,
CDHS, KARMEN, and NOMAD limit the two

∆m2 solar

∆m2 LSND

∆m2 atm

1
2

3

4

a)

∆m2 solar

∆m2 LSND

∆m2 atm

1
2

3

4

5

b)

FIG. 1. Flavor content of neutrino mass eigenstates in �3� 1� models (a), and �3� 2� models (b). Neutrino masses increase from
bottom to top. The �e fractions are indicated by right-leaning hatches, the �� fractions by left-leaning hatches, the �� fractions by
crosshatches, and the �s fractions by no hatches. The flavor contents shown are schematic only.
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independent mixing matrix parameters Ue4 and U�4 to be small, whereas LSND demands nonzero values.
In �3� 2� models, we introduce two sterile neutrinos. Using Eq. (1) and the unitarity of the mixing matrix, the

�3� 2� neutrino oscillation probability formula can be written

P��� ! �
� � �
 � 4	��
 �U�4U
4 �U�5U
5��U�4U
4sin
2x41 �U�5U
5sin

2x51� �U�4U�5U
4U
5sin
2x54
 �

� �
 � 4	U2
�4�U

2

4 � �
�sin

2x41 �U2
�5�U

2

5 � �
�sin

2x51 �U�4U
4U�5U
5�sin
2x41 � sin2x51 � sin2x54�
;

(5)

which in our case depends on two independent mass
splittings (�m2

41;�m
2
51) and four independent mixing

matrix parameters (U�4; U�5; with � � e;�).
Equation (2) can be recovered from Eq. (5) by requiring
U�5 � U
5 � 0. In �3� 2� models, the quasi two neu-
trino approximation is not valid, since there are three
distinct �m2 values contributing in the oscillation for-
mula:�m2

41,�m
2
51, and�m2

54, and therefore three distinct
oscillation amplitudes: �sin22��
�41, �sin22��
�51, and
�sin22��
�54.

We now comment on the Monte Carlo method used to
apply the above oscillation formalism to the analyses
presented in this paper. We require the neutrino mass
splittings to be in the range 0:1 eV2 � �m2

41; �m
2
51 �

100 eV2, with �m2
51 � �m2

41. Each mass splitting range
is analyzed over a 200 point grid, uniformly in log10�m

2.
In Sec.VI, we briefly discuss why large mass splittings are
not necessarily in contradiction with cosmological (and
other) data. The values of the mixing parameters, Ue4,
U�4, Ue5, and U�5, are randomly generated over a four-
dimensional space satisfying the four requirements:
U2
ei �U2

�i � 0:5, U2
�4 �U2

�5 � 0:5, where i � 4; 5, � �

e;�. These four inequalities are introduced to account for
the fact that large electron and muon flavor fractions in
the fourth and fifth mass eigenstates are not allowed by
solar and atmospheric neutrino data. In principle, since
the CDHS constraint on �� disappearance vanishes for
�m2 ’ 0:3 eV2, as shown in the Appendix, the upper
limit on �� disappearance from atmospheric neutrino
experiments above the atmospheric �m2 should be con-
sidered instead. In this paper, we do not reconstruct the
likelihood for atmospheric data that would give the ex-
clusion region for �� disappearance in the range
�m2

atm  �m2 < 0:3 eV2. However, the effect that the
atmospheric constraints would have on our results is
expected to be small. For example, in Ref. [26],
Bilenky et al. use the atmospheric up-down asymmetry
to derive the upper limit U2

�4 < 0:55 at 90% CL for �3�
1� models, which is satisfied by our initial requirements
U2
e4 �U2

�4 < 0:5; U2
�4 �U2

�5 < 0:5. A more recent
analysis [27] of atmospheric neutrino data using the full
zenith angle distribution provides a tighter constraint on
sin2��� than the one given in Ref. [26]; the impact of this
additional constraint on our SBL analysis is discussed in
Sections III and VI. Finally, from Eqs. (2), it is clear that
the relative sign of both Ue4 and U�4 cannot be inferred

in �3� 1� oscillations. Similarly, from Eq. (5), the only
physically observable relative sign between mixing pa-
rameters in CP-conserving �3� 2� models is
sign�Ue4U�4Ue5U�5�; therefore, this is the only sign re-
lated to mixing parameters that we randomly generate in
the analysis.

Throughout the paper, we make use of the Gaussian
approximation in determining allowed regions in pa-
rameter space. In general, this means that the regions of
quoted confidence level are the ones enclosed by contours
of constant �2 values, whose differences with respect to
the best-fit �2 value depend on the number of free pa-
rameters in the model [28]. In the text, we use the symbol
 to denote the values of the confidence levels derived in
this way. As pointed out in [29], this approach should be
considered approximate, as it may provide regions in
parameter space of both higher and lower confidence
than the one quoted. Regions of higher confidence than
the quoted value may result from the presence of highly
correlated parameters. Regions of lower confidence may
result from the presence of fast oscillatory behavior of the
oscillation probability formula, Eq. (1).

III. RESULTS FOR �3� 1� MODELS

This section, like the next one on �3� 2� models,
consists of two parts. First, we quantify the statistical
compatibility between the NSBL and LSND results, fol-
lowing a method described in [30,31], originally proposed
to establish the compatibility between the LSND and
KARMEN results. Second, we perform a combined
analysis of the NSBL and LSND datasets, to obtain the
favored regions in neutrino mass and mixing parameter
space.

A. Statistical compatibility between NSBL and LSND

Many analyses of the NSBL experiments within�3� 1�
models have concluded that the allowed LSND region is
largely excluded [32–34]. Here, we repeat this study with
two purposes. First, we use this study to give context to
our discussion of the basic model and techniques which
will be expanded in later sections. Second, we demon-
strate that our fit, which forms the basis of our new results
for �3� 2� models, reproduces the expected �3� 1� ex-
clusion region. For a discussion of the physics and statis-
tical assumptions used to describe the short-baseline
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experiments used in the analysis, the reader should refer
to the Appendix.

In this section, the NSBL and LSND datasets are
analyzed separately, providing two independent allowed
regions in �sin22��e;�m2� space. The level of statistical
compatibility between the two datasets can be deter-
mined by studying to what degree the two allowed re-
gions overlap, as will be quantified later in this section.

For each randomly generated �3� 1� model, we calcu-
late the values for the �2 functions �2NSBL and �2LSND,
where �2NSBL is defined as

�2NSBL � �2Bugey � �2CHOOZ � �2CCFR84 � �2CDHS
� �2KARMEN � �2NOMAD: (6)

For the analysis described in this section, the NSBL
and LSND allowed regions are obtained using two differ-
ent algorithms, reflecting the fact that the NSBL dataset
provides upper limits on oscillations, while the LSND
dataset points to non-null oscillations.

The NSBL allowed regions at various confidence levels
NSBL are obtained via a raster scan algorithm [29]. Let
�2NSBL be the �2 value for the particular model and
��2NSBL�min; �m2 be the minimum �2 for the �m2 value
considered. For example, our quoted 95% CL upper limit
on sin22��e is given by the maximum value for the
product 4U2

e4U
2
�4 chosen among the models which satisfy

the inequality �2NSBL � ��2NSBL�min; �m2 < 5:99. The value
of 5.99 units of �2 is chosen because there are two free

parameters Ue4, U�4 for �3� 1� models with fixed �m2.
We note that even for the NSBL dataset, the parameters
Ue4, U�4 can be correlated, since the KARMEN and
NOMAD results probe a combination of the two
parameters.

The LSND allowed regions at various confidence
levels LSND are obtained via a global scan algorithm
[29]. For example, for LSND � 0:95 we require �2LSND �
��2LSND�min < 5:99, where ��2LSND�min is now the global
LSND �2 minimum value, considering all possible �m2

values. The LSND allowed region is computed for two
free parameters as for the NSBL case, but the parameters
are now �m2 and U�4Ue4, as opposed to U�4 and Ue4.
Compared to the NSBL case, the number of free parame-
ters is reduced by one because the LSND ��� ! ��e search
only probes the product U�4Ue4 and not the two mixing
matrix elements individually, and it is increased by one
because the allowed region is now obtained by scanning
over all possible �m2 values.

The regions allowed in �sin22��e; �m2� parameter
space by both the NSBL and LSND datasets are shown
in Fig. 2(a). The NSBL allowed regions shown are two-
dimensional projections of three-dimensional allowed
regions in ��m2; Ue4; U�4� space. The NSBL results
alone allow the regions to the left of the solid gray,
dotted black, and solid black lines in the Fig. 2(a), at a
confidence level NSBL � 0:90; 0:95 ; 0:99, respectively.
In Fig. 2(a), the LSND � 0:90; 0:95; 0:99 CL allowed
regions obtained by our analysis for LSND data are also
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∆m
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FIG. 2. Compatibility between the NSBL and LSND datasets in �3� 1� models. Figure (a) shows the 90% ( gray solid line), 95%
(black dotted line), and 99% (black solid line) CL exclusion curves in �sin22��e; �m

2� space for �3� 1� models, considering the
null short-baseline (NSBL) experiments Bugey, CCFR84, CDHS, CHOOZ, KARMEN, and NOMAD. Figure (b) also shows the
90%, 95%, and 99% CL allowed regions by our analysis of LSND data. Figure (b) is as Figure (a), but in �pLSND; �m

2� space,
where pLSND is the LSND oscillation probability (see text for the definition). Figures (c) and (d) show the minimum �2 values as a
function of �m2 for the NSBL and LSND datasets (143 and three d.o.f., respectively).
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shown, as dark gray shaded, light gray shaded, and white
areas, respectively. We find no overlap between the two
individual 95% CL allowed regions; on the other hand,
there is overlap between the two 99% CL regions.

Figure 2(b) shows the same �3� 1� allowed regions as
Fig. 2(a) but in the �pLSND; �m2� plane, where pLSND is
defined as the �� ! �e oscillation probability averaged
over the LSND L=E distribution

pLSND � hP��� ! �e�i; (7)

where P��� ! �e� is given by Eq. (1) for � � �; 
 � e,
and is a function of all the mass and mixing parameters of
the oscillation model under consideration. This has the
obvious disadvantage of being a quantity dependent upon
the specifics of a certain experiment, as opposed to a
universal variable such as sin22��e � 4U2

�4U
2
e4.

However, pLSND has the advantage of being unambigu-
ously defined for any number of neutrino generations, and
thus is useful in discussing �3� 2� models later in this
paper. As stated previously, the oscillation probability
estimator sin22��e � 4U2

�4U
2
e4 cannot be used when

more than one �m2 value affects the oscillation proba-
bility, as is the case for �3� 2� models. A second advan-
tage of using pLSND instead of sin22��e as the oscillation
probability estimator, is that the allowed values for pLSND
inferred from the LSND result tend to be almost �m2 –
independent (see gray-shaded areas in Fig. 2(b)), as ex-
pected for an almost pure counting experiment such as
LSND. The oscillation probability reported by the LSND
collaboration [6] is pLSND � �0:264� 0:067� 0:045�%,
and agrees well with our result of Fig. 2(b).

Figure 2(c) shows the values for ��2NSBL�min as a func-
tion of �m2. The number of degrees of freedom is 143. As
discussed in the Appendix, the dip in ��2NSBL�min at�m2 ’
0:9 eV2 is due to Bugey data preferring Ue4 � 0 values,

while the minimum at �m2 � 10� 30 eV2 is due to
CDHS (mostly) and CCFR84 data, preferring U�4 � 0
values. The �2 value for no-oscillations, ��2NSBL�noosc �
132:2, is the largest �2 value in Fig. 2(c); this means that
the choice of parameters Ue4 � U�4 � 0 provides the
best-fit to NSBL data, for the �m2 values satisfying the
condition ��2NSBL�min � ��2NSBL�noosc. Note that the �m2 ’
0:9 eV2, �m2 ’ 10� 30 eV2 dips in �2NSBL are consis-
tent with Ue4U�4 � 0, and therefore with sin22��e �
pLSND � 0, but give better fits than the no-oscillations
hypothesis, Ue4 � U�4 � 0. In other words, the goodness
of fit for the sin22��e � pLSND � 0 region depends on the
�m2 value considered.

Similarly, Fig. 2(d) shows the values for ��2LSND�min as a
function of �m2, used to obtain the LSND allowed re-
gions drawn in Figs. 2(a) and 2(b).

We now present a slightly different approach to deter-
mine the statistical compatibility between the NSBL and
LSND datasets in �3� 1� models, which will prove useful
in comparing the�3� 1� and �3� 2� hypotheses.

In Fig. 3, we show the values for the �2 differences
��2NSBL,��2LSND, as well as the corresponding confidence
levels NSBL, LSND, as a function of the LSND oscillation
probability. The curves are for the set of �3� 1� models
with the neutrino mass splitting �m2 fixed to the best-fit
value obtained in a combined NSBL� LSND analysis
(see Sec. III B), �m2 � 0:92 eV2, and mixing matrix
elements U�4, Ue4 treated as free parameters. The value
for �m2 is chosen in this way because it represents to a
good approximation the value for which one expects the
best compatibility between the two datasets, as can
also be seen in Fig. 2(b). In Fig. 3(a), we map the
�Ue4; U�4� allowed space into the �pLSND; �2NSBL�,
�pLSND; �2LSND� spaces. For any given value of pLSND,
the minima for the �2NSBL and �2LSND functions are found
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FIG. 3. (a) �2 differences ��2NSBL, ��2LSND, and (b) individual confidence levels NSBL, LSND, as a function of the LSND
oscillation probability pLSND, for the NSBL and LSND datasets. The curves are for �3� 1� models with the neutrino mass splitting
�m2 fixed to the best-fit value �m2 � 0:92 eV2 from the combined NSBL� LSND analysis, and variable mixing matrix elements
U�4, Ue4. The solid curves refer to the NSBL dataset, the dotted ones to the LSND dataset. The dashed horizontal lines in Figure
(b) refer to the 90%, 95%, 99% individual confidence levels, the dotted horizontal line gives the combined confidence level  �
NSBL	LSND � �1� LSND�=2
 for which the NSBL and LSND datasets are incompatible.
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in the two (Ue4, U�4) and one (Ue4U�4) free parameters
available, respectively. The process is repeated for several
pLSND values, and the collection of these minima for all
values of pLSND give the two curves in Fig. 3(a). The
individual confidence levels NSBL, LSND, shown in
Fig. 3(b), are obtained from��2NSBL,��2LSND in the usual
way, by assuming one and two free parameters for the
LSND and NSBL datasets, respectively.

We now address how to extract areas in parameter
space of a given combined confidence  from two inde-
pendent experimental constraints, in our case obtained
via the NSBL and LSND datasets, without assuming
statistical compatibility a priori. The most straightfor-
ward way (described, for example, in [30,31]) is to assign
a confidence level  � NSBL	LSND � �1� LSND�=2
 to
the overlapping part (if any) between the two separate
allowed regions in parameter space which are found with
the constraint NSBL � LSND. The extra factor �1�
LSND�=2 is due to the fact that the LSND allowed region
in the oscillation probability is two-sided, and overlap
with the NSBL result on the same probability is obtained
only for downward fluctuations in the LSND result, and
not for upward ones.

From Fig. 3(b), we find overlapping allowed ranges in
pLSND for 1� NSBL � 1� LSND ’ 2:4%. We conclude
that, in �3� 1� models, the LSND and NSBL datasets are
incompatible at a combined confidence of  ’ 96:4%. In
our opinion, this value does not support any conclusive
statements against the statistical compatibility between
NSBL and LSND data in �3� 1� models, although it

represents poor agreement between the two datasets.
The reader should also refer to Sec. V D, where a different
method to quantify the compatibility between the NSBL
and LSND results is discussed. Future short-baseline
constraints on �� ! �e appearance, as well as on ��
and �e disappearance, should be able to definitively es-
tablish whether �3� 1� models are a viable solution to
explain the LSND signal.

B. Combined NSBL�LSND analysis

The second analysis we perform is a combined
NSBL� LSND analysis, with the purpose of obtaining
the �3� 1� allowed regions in parameter space, in both
�sin22��e; �m

2� and �pLSND; �m
2� space. A combined

analysis of this sort assumes statistically compatible re-
sults. In Sec. III A, we have shown that the LSND and
NSBL results are marginally compatible, for �3� 1�
models. In the following, we refer to the NSBL�
LSND dataset as the short-baseline (SBL) dataset, and
we construct the �2 function

�2SBL � �2NSBL � �2LSND; (8)

where the two contributions �2NSBL and �2LSND are now
simultaneously minimized with respect to the same set of
three oscillation parameters �m2, Ue4, U�4.

Figures 4(a) and 4(b) show the 90%, 95%, and 99% CL
three-dimensional allowed regions in ��m2; Ue4; U�4�

projected onto the �sin22��e; �m2� and �pLSND;�m2�

two-dimensional regions, respectively, from the com-
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FIG. 4. Allowed regions in parameter space from a combined analysis of NSBL and LSND data, in �3� 1� models, assuming
statistical compatibility of the NSBL and LSND datasets. Figure (a) shows the 90%, 95%, and 99% CL allowed regions in
�sin22��e; �m

2� space, together with the best-fit point, indicated by the star; (b) shows the same allowed regions in �pLSND; �m
2�

space; (c) shows the minimum �2 value obtained in the combined analysis as a function of �m2. The number of degrees of freedom
is 148.
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bined �3� 1� analysis of SBL data. In this combined
analysis, we use the same Monte Carlo method described
in Sec. III A. We define the allowed regions in parameter
space by performing a global scan. For example, the 95%
CL allowed region in the three-dimensional space
��m2; Ue4; U�4� is obtained by requiring �2SBL �
��2SBL�min < 7:82, where ��2SBL�min is the global minimum
�2 value. Figure 4(c) shows the minimum �2SBL values
obtained in the combined fit, as a function of �m2. Of
course, the �2SBL values shown in Fig. 4(c) for any given
�m2 value are larger than the sum of the two contribu-
tions �2NSBL, �2LSND, shown in Figs. 2(c) and 2(d), for the
same �m2 value, since the latter were separately mini-
mized with respect to the oscillation parameters.
Similarly, Figs. 5(a) and 5(b) show the projections of
the 90%, 95%, and 99% CL allowed regions in
��m2; Ue4; U�4� onto the �sin22�ee; �m

2� and
�sin22���; �m2� space, respectively, from the combined
�3� 1� analysis of SBL data. The zenith angle distribu-
tion of atmospheric muon neutrinos provides a constraint
to sin2��� that is not included in this SBL analysis;
mixings to the right of the dashed vertical line in
Fig. 5(b) are excluded at 90% CL by atmospheric neutrino
results [27]. The global �2 minimum is �2SBL � 144:9
(148 d.o.f.). This �2 value indicates an acceptable fit,
assuming that the goodness-of-fit statistic follows the
standard �2 p.d.f. [25]; for an alternative goodness-of-fit
test, the reader should refer to Sec. V D. The individual
NSBL and LSND contributions to the �2 minimum are
�2NSBL � 137:3 and �2LSND � 7:6, respectively. This best-
fit point corresponds to the mass and mixing parameters
�m2 � 0:92 eV2, Ue4 � 0:136, U�4 � 0:205.

IV. RESULTS FOR �3� 2� MODELS

A. Statistical compatibility between NSBL and LSND

Having introduced the relevant oscillation probability
formula in Eq. (5), and the statistical estimator pLSND to
compare the NSBL and LSND results in Sec. III A, we
can now quantitatively address the statistical compatibil-
ity between the NSBL and LSND datasets under the
�3� 2� hypothesis.

Ideally, we would like to determine the NSBL upper
limit for pLSND, for all possible combinations of the mass
parameters �m2

41, �m
2
51. This entails performing a scan

equivalent to the one described in the �3� 1� case as a
function of �m2

41, shown in Fig. 2. In practice, the CPU-
time requirements to pursue this route were prohibitive.

An easier problem to tackle is to determine the statis-
tical compatibility between the NSBL and LSND datasets
only for the �3� 2� models with mass splittings �m2

41,
�m2

51 fixed to their best-fit values, as obtained by the
combined NSBL� LSND analysis that we present in
Sec. IV B. In Sections III A and III B, we have demon-
strated that, at least for �3� 1� models, this choice is a
good approximation for the best possible statistical com-
patibility (see Figs. 2 and 4).

In Fig. 6, we show the behavior of the �2 values
��2NSBL and ��2LSND, and of the confidence levels NSBL
and LSND, as a function of pLSND, for the set of �3� 2�
models satisfying the requirements �m2

41 � 0:92 eV2,
�m2

51 � 22 eV2. By analogy with Fig. 3, we map
the four-dimensional space �Ue4; U�4; Ue5; U�5� into
the two-dimensional spaces �pLSND; �2NSBL� and
�pLSND; �2NSBL�, and we plot the minimum �2 values

10
-1

1

10

0 0.2 0.4 0.6 0.8 1

sin2 2θee

∆m
2  (

eV
2 )

a)

0 0.2 0.4 0.6 0.8 1

sin2 2θµµ

b)

FIG. 5. Allowed regions in the parameter spaces relevant for �e and �� disappearance from a combined analysis of NSBL and
LSND data, in �3� 1� models, assuming statistical compatibility of the NSBL and LSND datasets. Figure (a) shows the 90%, 95%,
and 99% CL allowed regions in �sin22�ee; �m2� space, together with the best-fit point, indicated by the star; (b) shows the same
allowed regions in �sin22���; �m

2� space. Mixings to the right of the dashed vertical line in Figure (b) are excluded at 90% CL by
atmospheric neutrino results [27], which are not included in this analysis.
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obtained for any given value of pLSND. The confidence
levels shown in Fig. 6(b) are obtained from Fig. 6(a)
considering the four free parameters (Ue4, U�4, Ue5,
U�5) in the �2NSBL minimization process, and the two
free parameters (Ue4U�4, Ue5U�5) for �2LSND.

From Fig. 6(b), we find that, in �3� 2� models, the
NSBL and LSND datasets are incompatible at an indi-
vidual confidence level of NSBL � LSND � 1� 0:215 �
78:5%, and at a combined confidence level  �
NSBL	LSND � �1� LSND�=2
 � 70:0%. Figure 6 should
be compared to Fig. 3, obtained for �3� 1� models. A
detailed comparison of the �3� 1� and �3� 2� hypoth-
eses is presented in Sec. V.

B. Combined NSBL�LSND analysis

We now turn to a combined analysis of the NSBL and
LSND results in �3� 2� models, assuming statistical
compatibility between the two datasets. The purpose of
this combined analysis is to obtain the allowed regions in
the mass parameter space ��m2

41; �m
2
51�, regardless of

the simultaneous values for the mixing parameters.
Results will be shown for �m2

51 � �m2
41; the case

�m2
41 >�m2

51 can be obtained by simply interchanging
�m2

41 with �m2
51. The 95% CL allowed region is defined

as the ��m2
41;�m

2
51� for which �2SBL � ��2SBL�min < 5:99,

where ��2SBL�min is the absolute �2 minimum for all
��m2

41; �m
2
51� values. In the minimization procedure,

the mixing matrix elements Ue4, U�4, Ue5, U�5, are
treated as free parameters.

Figure 7 shows the 90% and 99% CL allowed regions
in ��m2

41; �m
2
51� space obtained in the combined �3� 2�

analysis. In light of the �3� 1� analysis shown in pre-
vious sections, the result is not surprising, pointing to
favored masses in the range �m2

41 ’ 0:9 eV
2, �m2

51 ’

10� 40 eV2, at 90% CL. At 99% CL, the allowed region
extends considerably, and many other ��m2

41; �m
2
51�

combinations appear. The best-fit model (�2SBL � 135:9,
145 d.o.f.) is described by the following set of parameters:
�m2

41 � 0:92 eV2, Ue4 � 0:121, U�4 � 0:204, �m2
51 �

10
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 2  (
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2 )

FIG. 7. Allowed ranges in ��m2
41; �m

2
51� space for �3� 2�

models, for the combined NSBL� LSND analysis, assuming
statistical compatibility between the NSBL and LSND datasets.
The star indicates the best-fit point, the dark and light gray-
shaded regions indicate the 90 and 99% CL allowed regions,
respectively. Only the �m2

51 >�m2
41 region is shown; the

complementary region �m2
41 � �m2

51 can be obtained by in-
terchanging �m2

41 with �m2
51.
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FIG. 6. (a) �2 differences ��2NSBL and ��2LSND, and (b) individual confidence levels NSBL and LSND, as a function of the LSND
oscillation probability pLSND, for the NSBL and LSND datasets. The curves are for �3� 2� models with the neutrino mass splittings
�m2

41 and �m2
51, fixed to the best-fit values �m2

41 � 0:92 eV2, �m2
51 � 22 eV2 from the combined NSBL� LSND analysis, and

variable mixing matrix elements Ue4, U�4, Ue5, U�5. The solid curves refer to the NSBL dataset, the dotted ones to the LSND
dataset. The dashed horizontal lines in Figure (b) refer to the 90%, 95%, 99% individual confidence levels; the dotted horizontal
line gives the combined confidence level  � NSBL	LSND � �1� LSND�=2
 for which the NSBL and LSND datasets are
incompatible.
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22 eV2, Ue5 � 0:036, and U�5 � 0:224. We note here that
the best fit is not obtained for fourth and fifth mass
eigenstates with degenerate masses, that is for �m2

41 ’
�m2

51. The best-fit model we found for sub-eV neutrino
masses is �m2

41 � 0:46 eV2, Ue4 � 0:090, U�4 � 0:226,
�m2

51 � 0:89 eV2, Ue5 � 0:125, U�4 � 0:160, corre-
sponding to �2SBL � 141:5 (145 d.o.f.).

V. COMPARING THE �3� 1� AND �3� 2� FITS TO
SBL DATA

In this section, we discuss four statistical tests that can
be used to quantify the better overall agreement of SBL
data to a �3� 2� hypothesis for neutrino oscillations,
compared to a �3� 1� one.

A. Test 1: NSBL upper limit on pLSND at a given
confidence level �NSBL

Test one uses only NSBL data to establish the �3� 1�
and �3� 2� upper bounds on the LSND oscillation proba-
bility pLSND. From Figs. 3 and 6, we obtain at a confidence
level NSBL � 0:90�0:99�:

(i) �3� 1�: pLSND < 0:100%�0:162%�
(ii) �3� 2�: pLSND < 0:186%�0:262%�

Therefore, we find that �3� 2� models can enhance the
LSND probability pLSND by quite a large factor, com-
pared to �3� 1� models. The increase in pLSND that we
obtain is significantly larger than the 25% increase found
in [32], which is based on a specific choice of mixing
parameters, as opposed to the complete parameter scan
performed in this work. The value for the ��� ! ��e oscil-
lation probability measured by LSND [6] is pLSND �
�0:264� 0:067� 0:045�%, where the errors refer to the
1� statistical and systematic errors, respectively.

B. Test 2: statistical compatibility between the NSBL
and LSND datasets

Test two uses both the NSBL and LSND datasets, and
treats them independently to find the combined confi-
dence level  � NSBL	LSND � �1� LSND�=2
 for
which the datasets are incompatible, both in �3� 1� and
�3� 2� models. The combined confidence levels can also
be read from Figs. 3 and 6:

(i) �3� 1�:  � 96:4%
(ii) �3� 2�:  � 70:0%

Therefore, we find that in �3� 1� models the two datasets
are marginally compatible, and the agreement is better in
�3� 2� models.

C. Test 3: likelihood ratio test

Test three combines the NSBL and LSND datasets into
a single, joint analysis. The likelihood ratio test [35]
provides a standard way to assess whether two hypotheses
can be distinguished in a statistically significant way. We
define the maximum likelihood Li from the minimum �2

values ��2SBL�min;i as Li � exp	���2SBL�min;i=2
, where the
index i � 1; 2 refers to the �3� 1� and �3� 2� hypoth-
eses, respectively. We can then form the likelihood ratio
�1;2 � L1=L2. If the �3� 1� hypothesis were as adequate
as the �3� 2� hypothesis in describing SBL data, the
quantity

�21;2�3� � �2 ln�1;2 � ��2SBL�min;1 � ��2SBL�min;2 (9)

should be distributed as a �2 distribution with three
degrees of freedom, where the number of degrees of free-
dom is the difference in the number of mass and mixing
parameters in the �3� 2� and �3� 1� hypotheses,
6� 3 � 3

In our combined fits, we obtain (see Sections III B and
IV B):

(i) �3� 1�: ��2SBL�min;1 � 144:9, (148 d.o.f.)
(ii) �3� 2�: ] ��2SBL�min;2 � 135:9, (145 d.o.f.)

and therefore �21;2�3� � 9:0. This value is significantly
larger than three; the probability for a �2 distribution
with 3 degrees of freedom to exceed the value 9.0 is only
2.9%. In other words, according to the likelihood ratio
test, the �3� 1� hypothesis should be rejected compared
to the �3� 2� one at the 97.1% CL. Therefore, based on
this test, we conclude from test three also that �3� 2�
models fit SBL data significantly better than �3� 1�
models.

D. Test 4: compatibility using the ‘‘parameter good-
ness of fit’’

Test four uses both the results of the individual NSBL
and LSND analyses, as well as the results of the
combined NSBL� LSND analysis. The test is based
on the ‘‘parameter goodness of fit’’ [36] to compare
the compatibility of the NSBL and LSND results under
the �3� 1� and �3� 2� hypotheses. The test avoids
the problem that a possible disagreement between
the two results is diluted by data points which are insen-
sitive to the mass and mixing parameters that are com-
mon to both datasets. The number of parameters common
to both datasets is Pc � 2 in �3� 1� models, and Pc � 4
in �3� 2� models. One possible choice of common
parameters is ��m2

41; Ue4U�4� for �3� 1� models,
��m2

41; Ue4U�4; �m
2
51; Ue5U�5� for �3� 2� models.

The test is based on the statistic �2PG � �2PG;NSBL �
�2PG;LSND, where �2PG;NSBL � ��2NSBL�SBLmin �
��2NSBL�NSBLmin and �2PG;LSND � ��2LSND�SBLmin �
��2LSND�LSNDmin are the (positive) differences for the
NSBL and LSND �2 values obtained by minimizing
the entire SBL �2 function, minus the �2 values that
best fit the individual datasets.

Table I gives the values for the parameter goodness of
fit PG as defined in [36], based on the �2PG statistic, and
the number of parameters common to the NSBL and
LSND datasets, Pc. This test shows a dramatic improve-
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ment in the compatibility between the NSBL and LSND
results in going from a �3� 1� to a �3� 2� model, raising
the compatibility by nearly 2 orders of magnitude, from
0.03% to 2.1%. It will be interesting to investigate if
�3� 3� models can improve the compatibility further.
The resulting compatibility levels obtained with the pa-
rameter goodness-of-fit method are lower than those
found in Sec. V B; this, however, is not surprising, since
the two statistical tests are quite different.

VI. ADDITIONAL CONSTRAINTS

The �3� 1� and �3� 2� models discussed in this work
should be confronted with additional experimental con-
straints, other than the ones discussed in detail in the
previous sections. We limit ourselves here to list and
comment on some of these constraints, rather than ad-
dress them in a quantitative way. Mostly, we will discuss
the impact that such additional constraints may have on
the best-fit �3� 1� and �3� 2� models found in
Sections III and IV.

First, nonzero mixing matrix elements Ue4, U�4, Ue5,
and U�5 may cause observable effects in atmospheric
neutrino data, in the form of zenith angle-independent
suppressions of the �� and �e survival probabilities. Since
our analysis of SBL data tends to give larger values for
muon, rather than electron, flavor content in the fourth
and fifth mass eigenstate, the effect should be larger on
muon atmospheric neutrinos. For example, the �3� 1�
and �3� 2� best-fit models from Sections III B and IV B
would give an overall suppression of the �� flux of 8%
and 17%, respectively. The size of the effect of �� ! �x
oscillations at high �m2 is comparable to the current
accuracy with which the absolute normalization of the
atmospheric neutrino flux is known [37], which is ap-
proximately 20%. A more quantitative analysis using the
full Super-Kamiokande and MACRO spectral informa-
tion [27] puts an upper bound of 16% at 90% CL on this
high �m2 contribution to the atmospheric �� flux sup-
pression (in the notation of Ref. [27], this suppression is
parametrized as 2d��1� d��, where d� < 0:09 at 90%
CL). Therefore, it is expected that the inclusion of atmos-
pheric neutrino data in this analysis would pull the best-fit
muon flavor components in the fourth and fifth mass

eigenstates to lower values, but not in a dramatic way
[see also Fig. 5(b)].

Second, models with large masses m4 and m5, and with
nonzero mixing matrix elements Ue4 and Ue5, should be
confronted with tritium 
 decay measurements. The
presence of neutrino masses m4 and m5 introduces kinks
in the differential 
 spectrum; the location in energy of
the kinks is determined by the neutrino masses, and the
size of the kinks is determined by the amount of electron
flavor component in the fourth and fifth mass eigenstates.
For a spectrometer integrating over the electron energy
interval  near the 
 decay endpoint, the count rate is
[38]

n�� �
�R
3

Xn

i�1

U2
ei�

2 �m2
i �
3=2; (10)

where the quantity �R does not depend on the small neu-
trino masses and mixings, n � 4 or n � 5 for �3� 1� or
�3� 2� models, respectively, and we have assumed  >
mi; i � 1; . . . ; n, and CP-invariance. From the experi-
mental point of view, tritium 
 decay results are gener-
ally expressed in terms of a single effective mass m��e�

ns�� �
�R
3
	2 �m��e�

2
3=2; (11)

where m��e� is the fit mass parameter. In the limit 2 �
m2
i ; i � 1; . . . ; n the relation between the true masses

and mixings to the fitted mass m��e� is independent from
the integration interval 

m��e�2 ’
Xn

i�1

U2
eim

2
i : (12)

The condition 2 � m2
i ; i � 1; . . . ; n is generally sat-

isfied for the neutrino masses considered in this paper, in
order to ensure sufficient 
 decay count rate statistics in
the experiments. Therefore, to a first approximation, we
can consider the effect of heavy neutrino masses m4, m5

only on the single mass parameter m��e� fitted by the
experiments. A more general analysis assessing the sen-
sitivity of current and future 
 decay experiments to
multiple fitted neutrino masses, although highly desir-
able, is beyond the scope of this work; for further details,
the reader should consult Ref. [38]. The current best
measurements on m��e�

2 come from the Troitsk and
Mainz experiments [39], which have very similar
m��e�2 sensitivities. Both found no evidence for a nonzero
m��e�2 value; the latest Mainz result is m��e�2 � �1:6�
2:5� 2:1 eV2, or m��e� � 2:2 eV at 95% CL, using  �
70 eV [39]. Now, assuming a normal hierarchy (m1 <
m4 <m5) with m1 ’ 0, the 
 decay neutrino mass in
Eq. (12) can be written as m��e� ’ U2

e4�m
2
41 �

U2
e5�m

2
51; the best-fit �3� 1� and �3� 2� models found

in this analysis would give m��e�2 � 0:017 eV2 and
m��e�2 � 0:042 eV2, respectively, that is m��e�2 values

TABLE I. Parameter goodness-of-fit PG, as defined in [36],
to test the statistical compatibility between the NSBL and
LSND datasets under the �3� 1� and �3� 2� hypotheses. The
quantities �2PG;NSBL and �2PG;LSND are the NSBL and LSND
contributions to the test statistic �2PG defined in the text; Pc

indicates the number of parameters common to both datasets.

Model �2PG;NSBL �2PG;LSND �2PG Pc PG (%)

�3� 1� 11.8 4.3 16.1 2 3:2 � 10�2

�3� 2� 7.1 4.4 11.5 4 2.1
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well below the current experimental sensitivity. The
planned tritium 
 decay experiment KATRIN should be
able to improve the sensitivity to m��e� by roughly an
order of magnitude in the forthcoming years, thanks to its
better statistics, energy resolution, and background rejec-
tion [40]. Specifically, the systematic and statistical (for
 * 30 eV) uncertainties on the single fitted mass m��e�

2

quoted for KATRIN are 0.018 and 0:016 eV2, respec-
tively [40], which should provide some sensitivity to the
preferred �3� 1� and �3� 2� neutrino models with a
normal mass hierarchy, m1 <m4 <m5. We now consider
mass spectra with an inverted hierarchy, defined here
as m4 <m1 for �3� 1� models, and m5 <m4 <m1 for
�3� 2� models. We note that for �3� 2� models other
hierarchies are also possible, but those do not satisfy
the implicit assumption j�m2

51j � j�m2
54j � j�m2

41j taken
in this analysis. The 
 decay neutrino mass in Eq. (12)
can now be written as m��e�2 ’ j�m2

41j for inverted
�3� 1� models, and as m��e�2 ’ j�m2

51j for inverted�3�
2� models. Clearly, in this case the 
 decay constraints
depend strongly on the values of j�m2

41j; j�m
2
51j, and

models with * 5 eV2 mass splittings are already severely
disfavored.

Third, introducing sterile neutrinos may affect a num-
ber of cosmological predictions, which are derived from
various measurements [41]. The standard cosmological
model predicts that sterile neutrinos in the �1 eV mass
range with a significant mixing with active neutrinos
would be present in the early Universe with the same
abundance as the active neutrino species, in disagreement
with cosmological observations [42,43]. On the other
hand, several models have been proposed that would
reconcile sterile neutrinos with cosmological observa-
tions, for example, suppressing thermal abundances for
sterile neutrinos (see, e.g., Ref.[42] and references
therein). In particular, active-sterile oscillations in the
early Universe may provide a natural mechanism to sup-
press the relic abundances of sterile neutrinos [44], and
scenarios invoking multiple sterile neutrinos are being
investigated [43].

VII. CONCLUSIONS

We have performed a combined analysis of seven short-
baseline experiments (Bugey, CHOOZ, CCFR84, CDHS,
KARMEN, LSND, NOMAD) for both the �3� 1� and
the �3� 2� neutrino oscillation hypotheses, involving one
and two sterile neutrinos at high �m2, respectively. The
motivation for considering more than one sterile neutrino
arises from the tension in trying to reconcile, in a CPT-
conserving, four-neutrino picture, the LSND signal for
oscillations with the null results obtained by the other
short-baseline experiments. Multiple (e.g. three) sterile
neutrinos can also be motivated on theoretical grounds.

We have described two types of analyses for both the
�3� 1� and �3� 2� neutrino oscillation hypotheses. In

the first analysis, we treat the LSND and the null short-
baseline (NSBL) datasets separately, and we determine
the statistical compatibility between the two. In the sec-
ond analysis, we assume statistical compatibility and we
combine the two datasets, to obtain the favored regions in
neutrino mass and mixing parameter space.

The main results of the analysis are summarized in
Sec. V, where we compare the adequacy of the �3� 1� and
�3� 2� hypotheses in describing neutrino short-baseline
data, by means of four statistical tests. First, we treat the
LSND oscillation probability as a parameter that can be
measured with NSBL data alone, and find that the NSBL
90% CL upper limit on the LSND oscillation probability
can be significantly relaxed by going from �3� 1� to �3�
2� models, by about 80%. Second, the combined confi-
dence level for which the NSBL and LSND datasets are
incompatible is determined to be 96.4% and 70.0% in the
analysis, for the �3� 1� and �3� 2� hypotheses, respec-
tively. Third, a likelihood ratio test of the two hypotheses
is discussed, and shows that the �3� 1� hypothesis should
be rejected compared to the �3� 2� one at the 97.1% CL.
Fourth, the parameter ‘‘goodness of fit’’ defined in [36]
shows much better agreement between the NSBL and
LSND results for �3� 2� models than for �3� 1� models.

In conclusion, we find that �3� 1� models are only
marginally allowed when considering all of the seven
short-baseline results, including LSND, in agreement
with previous analyses [32–34], and that �3� 2� models
can provide a better description of the data. Only the
simplest neutrino mass and mixing patterns have been
fully characterized in the literature so far, and the analy-
sis described in this paper may be viewed as a simple
attempt to explore more generic scenarios, which appear
both experimentally and theoretically plausible. Given
the bright potential for precision measurements by neu-
trino oscillation experiments in the near future, a more
general phenomenological approach may be needed.
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APPENDIX: PHYSICS AND STATISTICAL
ASSUMPTIONS

In this section, we briefly describe the physics and
statistical assumptions used to obtain the approximate
characterizations of the short-baseline experiments used
in the analysis. For the analysis of the Bugey, CDHS, and
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KARMEN data, we also refer to the excellent reference
[34], which we followed closely.

The Bugey experiment [18] is sensitive to ��e disappear-
ance by measuring the charged-current interaction of
��e’s produced by two nuclear reactors at the Bugey nu-
clear power plant. Two liquid scintillator detectors, lo-
cated at different positions, are used. The signature for an
antineutrino interaction is a positron and a delayed light
pulse produced by the subsequent neutron capture on 6Li.
Data are given for three baselines: 15, 40, and 95 m
between neutrino production and detection. We follow
the ‘‘normalized energy spectra’’ analysis discussed in
the Bugey paper [18]. The data are presented as ratios of
observed to predicted (for no-oscillations) positron en-
ergy spectra, between one and 6 MeV positron energy. We
use 25, 25, and ten positron energy bins for the 15, 40,
95 m baselines, respectively. In the �2 analysis, fits in-
cluded not only the mass and mixing parameters, but also
five large scale deformations of the positron spectrum due
to systematic effects. The experimental positron energy
resolution and the neutrino baseline smearing are taken
into account; the neutrino cross-section energy depen-
dence within a positron energy bin is not (the energy
bin widths are small).

Similarly, the CHOOZ experiment [21] investigates ��e
disappearance by observing interactions of ��e ’s produced
by two nuclear reactors ’ 1 km away from the CHOOZ
detector. The signature for a neutrino interaction is a
delayed coincidence between the prompt e� signal and
the signal due to the neutron capture in the Gd-loaded
scintillator. We follow ‘‘analysis A,’’ as discussed in the
CHOOZ paper [21]. Data are given as positron yields as a
function of energy. In this analysis, seven positron energy
bins, between 0.8 and 6.4 MeV, are considered, for which
the CHOOZ observations, as well as the predictions on
the positron yields for the no-oscillation case from both
reactors, are given in [21]. Because of the presence of two
reactor sources, the �2 analysis comprises 14 positron
yield bins for a given energy/baseline. We use the full
covariance matrix to take into account the fact that the
yields corresponding to the same energy bin are extracted
for both reactors simultaneously, as is done in [21]. The
analysis fits for the systematic uncertainty in the absolute
normalization constant on the ��e yield from the reactors,
in addition to the mass and mixing parameters. Since we
are interested in the �m2 > 0:1 eV2 range only, where no
energy shape distortions are expected, we neglect the
systematic uncertainty on the energy-scale calibration,
and the effect of the positron energy resolution.

The CCFR84 experiment [19] constrains �� and ���
disappearance by measuring the charged-current interac-
tion of muon neutrinos and antineutrinos, produced by a
Fermilab secondary, sign selected beam yielding 40<
E� < 230 GeV neutrinos from '� and K� decays in the
352 m long decay pipe. We refer here to the 1984 CCFR

experiment (hence the label CCFR84 throughout the
text), which operated with two similar detectors located
at different distances from the neutrino source, 715 and
1116 m from the midpoint of the decay region, respec-
tively. The two sampling calorimeter detectors consisted
of steel plates and scintillation counters. Six secondary
beam momentum settings were used, five for neutrino
running, and one for antineutrino running. For each sec-
ondary beam momentum setting, the data are divided
into three neutrino energy bins, for a total of 18 energy
bins, from Ref.[45]. Data are presented as double ratios:
the far to near detector ratio of observed number of
events, divided by the far to near ratio of events predicted
for no-oscillations. As in [19], only the mean neutrino
energy for a given neutrino energy bin is used in the �2

analysis. The systematic and statistical uncertainties on
the far to near ratio normalization are taken into account.
The systematic uncertainty is assumed to be energy-
independent and totally correlated between any two en-
ergy bins. The neutrino pathlength smearing, mostly due
to the long decay region, is also taken into account.

The CDHS experiment [20] is also sensitive to ��
disappearance via the charged-current interaction of
��’s, produced by a 19.2 GeV/c proton beam from the
CERN Proton Synchrotron. Two detectors are located at
130 and 835 m from the target. The detectors are sam-
pling calorimeters, with iron and scintillator modules
interspersed, to measure the range of a muon produced
in a neutrino interaction. Fifteen muon range bins are
used. The data are presented as double ratios: the far to
near detector ratio of the observed number of events,
divided by the far to near ratio of the number of events
predicted for no oscillations. Neutrino energy distribu-
tions are obtained for a given muon energy (or range) via
the NUANCE [46] neutrino cross-section generator. As
for CCFR84, the systematic uncertainty on the far to near
ratio and the neutrino baseline smearing are taken into
account.

The KARMEN experiment [22] investigates the ��� !

��e appearance channel, from ���’s produced in the '�

��-decay at rest (DAR) chain of the ISIS neutrino source.
KARMEN measures the charged-current interaction
p� ��e; e��n, with a liquid scinitillator detector located at
an average distance 17.7 m downstream of the neutrino
source. The ��e signature is a spatially correlated delayed
coincidence between a prompt positron and a delayed )
event from a �n; )� neutron capture reaction. In this
analysis, only the positron (‘‘prompt’’) energy distribu-
tion after all cuts is taken into account, given in [22]. The
data are binned into nine prompt energy bins, between 16
and 50 MeV (all bins are 4 MeV wide, except the highest
energy one, ranging from 48 to 50 MeV). In predicting the
prompt energy distribution for a set of mass and mixing
oscillation parameters, the given Monte Carlo positron
energy distribution, and the total number of events ex-
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pected after all cuts for full mixing and �m2 � 100 eV2,
are used [47]. Energy resolution and baseline smearing
effects (due to finite detector size) are taken into account.
Given the low statistics of the nine KARMEN prompt
energy bins, we construct the �2 function by first defining
the likelihood ratio [25]

���� �
f	n;����;b

f�n;n;b�

; (A1)

where � denotes schematically all mass and mixing pa-
rameters, n, ���� and b are the data, expected signal, and
expected background vectors with nine elements, and
f	n; ����; b
 are the probabilities for a Poisson process
with known background

f	n; ����; b
 �
Y9

i�1

��i � bi�ni exp	���i � bi�
:
ni!

(A2)

We define �2KARMEN as

�2KARMEN � �2 ln����: (15)

The LSND experiment at Los Alamos [6] is also sen-
sitive to ��� ! ��e appearance, with a neutrino source and
detection signature similar to that of KARMEN, but with
better statistics. The LSND liquid scintillator detector is
located at an average distance of 30 m from the neutrino
source. As for KARMEN, in this analysis we consider
only the positron energy distribution arising from a ��e
interaction in mineral oil, published as five energy bins
between 20 and 60 MeV [6]. Our analysis ignores the
information arising from the higher-energy neutrinos
from pions decaying in flight, which has a smaller (but
non-negligible) sensitivity to oscillations compared to the
decay at rest (DAR) sample considered here. In our simu-
lation, we take into account the expected energy distri-
bution from �� decay at rest, the neutrino baseline
distribution for the 8 m long cylindrical detector, the
neutrino energy dependence of the cross-section for the
detection process p� ��e; e

��n (including nuclear effects,
simulated with the NUANCE [46] neutrino cross-section
generator), and the experimental energy resolution. We
use the published numbers for the background expecta-
tions, the number of ��e events for 100% ��� ! ��e trans-
mutation, and for the efficiency of the event selection
criteria. We construct the LSND �2 function in the
same way as we construct the one for KARMEN, because
of the low statistics of the data sample.

Finally, the NOMAD experiment is sensitive to �� !

�e oscillations at �m2 * 1 eV2 by looking for charged-
current muon neutrino and electron neutrino interactions
in the NOMAD detector [23]. The detector consists of a
large dipole magnet which houses drift chambers to
measure the momenta of the charged particles produced

in neutrino interactions; transition radiation modules for
lepton identification; an electromagnetic calorimeter to
measure the energy of electrons and photons; a hadron
calorimeter for particle identification; and muon cham-
bers for muon identification. Neutrinos are produced by
impinging 450 GeV protons extracted from the CERN
SPS accelerator onto a thick beryllium target. The sec-
ondary particles produced in the target are focused into a
nearly parallel beam by two magnetic lenses, and decay
in a 290 m long decay tunnel to produce a �10�
100 GeV neutrino beam with about 1%�e contamination.
Neutrino interactions are then observed in the NOMAD
detector at an average distance of 625 m from the neu-
trino source. The �� ! �e search is performed by com-
paring the measured ratio Re� of the number of �e to ��
charged-current neutrino interactions with the one ex-
pected in the absence of oscillations. The data are binned
into 30 bins, covering ten bins in visible energy between
three and 170 GeV, and three radial bins in the neutrino
interaction vertex. A �2 analysis is performed, using the
final NOMAD numbers on the observed and predicted
electron-to-muon ratio, including statistical errors as
well as the full error matrix describing systematic uncer-
tainties and uncertainty correlations over different bins
[48]. In predicting the effect of �� ! �e oscillations
under any mass and mixing hypothesis, the contribution
to Re� from oscillations with full mixing and �m2 �

5000 eV2 expected in NOMAD after all cuts are used
[48]. Energy resolution and baseline smearing effects
(due to the long decay region) are taken into account [23].

In Fig. 8, we show our calculations of the 90% CL
upper limits on oscillations as a function of �m2 for the
six NSBL experiments considered here, as well as the
90% CL allowed region for LSND. The ��2�min values as
a function of �m2 for all of the experiments are also
shown. All the solid curves shown are obtained from the
simplified analysis described here, and compare well with
the published results [6,18–23].

The LSND region obtained in our analysis of DAR
neutrinos is slightly shifted to the right compared to the
final LSND area, shown in Fig. 8(f) as a dashed line,
reflecting the difference in the two datasets. More de-
tailed LSND DAR analyses give results in rough agree-
ment with our allowed region [12,30].

The ��2�min values obtained for the Bugey and CDHS
experiments as a function of �m2 give details that might
seem surprising, at first. Slightly better fits to the data are
obtained under a neutrino oscillations hypothesis, as
opposed to the no-oscillations one. Therefore, we add a
final comment to explain the results of these fits.

The Bugey fit is driven by the data at the shortest
baseline, 15 m, where the statistical errors on the ob-
served positron spectrum from ��e interactions are the
smallest. As explained in Ref.[18], systematic uncertain-
ties are taken into account by allowing for linear defor-
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mations, as a function of positron energy, of the ratio of
observed to predicted positron yields. The values of
��2Bugey�min as a function of �m2 are explained by the
fact that, for certain �m2 values, an oscillatory fit to the
15 m positron spectrum ratio describes the data margin-
ally better than any straight line. Our best-fit oscillation

hypothesis to Bugey data only is �m2 � 0:92 eV2,
sin22�ee � 0:05.

For CDHS, the ��2CDHS�min curve in Fig. 8(d) has a
minimum at �m2 ’ 20� 30 eV2. This minimum is due
to the fact that the far/near �� rate ratio, corrected for the
baseline and detector mass differences between the two
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FIG. 8. 90% CL upper limits on oscillations derived in this analysis for the following NSBL experiments: (a) Bugey, (b) CHOOZ,
(c) CCFR84, (d) CDHS, (e) KARMEN, (g) NOMAD. Figure (f) shows the LSND 90% CL allowed region obtained with the decay-
at-rest analysis described in the Appendix (solid line), superimposed to the published LSND 90% CL allowed region (dashed line).
Also shown are the ��2�min values as a function of �m2 obtained by all the experiments considered individually. The number of
degrees of freedom is 58 in Bugey, 12 in CHOOZ, 16 in CCFR84, 13 in CDHS, seven in KARMEN, three in LSND, 28 in NOMAD.
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detectors (as well as other minor effects), is measured to
be slightly greater than one [20]: Rcorr � 1:044� 0:023�
0:025. This marginal deviation from one causes the fit
procedure to prefer more �� disappearance by oscilla-
tions in the near than in the far detector. Given the

average �� energy (3.2 GeV) and pathlength (130 m)
for neutrinos interacting in the CDHS near detector,
this condition is satisfied in the �m2 � 20� 30 eV2

range. Our best-fit oscillation hypothesis to CDHS data
only is �m2 � 24 eV2, sin22��� � 0:29.
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57

2.3 Short-Baseline Neutrino Experiments and Lep-

tonic CP-Violation

One of the most pressing open questions in neutrino physics today is whether or not

leptons fail to conserve the fundamental CP symmetry. The consequences of a lep-

tonic CP symmetry violation would be far-reaching and extend beyond the realm of

particle physics, possibly being related to the matter-antimatter asymmetry observed

in the Universe today.

In the standard paradigm of three active neutrino mixing occurring at the solar

and atmospheric oscillation scales only, leptonic CP violation would yield different

vacuum oscillation probabilities for neutrinos and antineutrinos that could be ob-

served with accelerator-based neutrino oscillation appearance experiments operating

near the atmospheric oscillation maximum. This is because CP-odd terms in the os-

cillation probability formula would appear from solar/atmospheric interference terms

involving the single CP-violating Dirac phase appearing in the neutrino mixing ma-

trix. An ambitious experimental program is currently being planned to try to measure

this CP-violating phase [48].

Neutrino models involving active/sterile neutrino mixing at the LSND neutrino

mass splitting scale via at least two sterile neutrino states would open the possi-

bility for further manifestations of leptonic CP violation, including ones that could

be measurable with neutrino appearance experiments at short baselines also. In the

following, short-baseline leptonic CP-violation in (3+2) sterile neutrino models is

discussed, based on work done in collaboration with A. Aguilar-Arevalo, V. Barger,

J. Conrad, M. Shaevitz, and K. Whisnant [71]. The first main result of this work is

that a combined analysis of current short-baseline oscillation results allow for all pos-

sible values for the CP-violating phase that could be measurable at short baselines.

The second main result is that CP violation at short baselines could significantly alter

the expectations for oscillations in MiniBooNE neutrino running mode, based on the
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LSND antineutrino oscillation signal indication. In this scenario, an additional Mini-

BooNE antineutrino run would be highly desirable. Third, the studies show that the

combination of high-statistics MiniBooNE νµ → νe and ν̄µ → ν̄e searches could, under

favorable circumstances, lead to the measurement of this short-baseline CP-violating

phase.

2.3.1 Including CP-Violation in the Neutrino Oscillation For-

malism

As discussed in Section 1.3, for N neutrino species, the general neutrino oscillation

formula is:

P (να → νβ) = δαβ − 4
∑
i>j

R(U∗
αiUβiUαjU

∗
βj) sin2 xij +

+2
∑
i>j

I(U∗
αiUβiUαjU

∗
βj) sin 2xij (2.1)

where α, β ≡ e, µ, τ , or sterile flavor, i, j = 1, . . . , N , xij ≡ 1.27∆m2
ijL/E, the neu-

trino mass splitting ∆m2
ij ≡ m2

i −m2
j is in eV2, the neutrino baseline L in km, and the

neutrino energy E is in GeV. There are, in general, (N − 1) independent mass split-

tings, N(N − 1)/2 independent moduli of parameters in the unitary mixing matrix,

and (N−1)(N−2)/2 Dirac CP-violating phases that may be observed in oscillations.

In short-baseline neutrino experiments that are sensitive only to νµ → ν6µ, νe → ν6e,

and νµ → νe transitions, the set of observable parameters simplifies considerably.

First, oscillations due to atmospheric and solar mass splittings can be neglected in

this case, or equivalently one can set m1 = m2 = m3. Second, mixing matrix elements

that measure the τ neutrino flavor fraction of the various neutrino mass eigenstates

do not enter in the oscillation probability. In this case, the number of observable pa-

rameters restricts to (N − 3) independent mass splittings, 2(N − 3) moduli of mixing

matrix parameters, and (N − 3)(N − 4)/2 CP-violating phases. Therefore, for (3+2)

sterile neutrino models depicted in Fig. 2.1, there are two independent mass splittings
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Figure 2.1: Flavor content of neutrino mass eigenstates in (3+2) models. Neutrino masses

increase from bottom to top. The νe fractions are indicated by right-leaning hatches, the νµ

fractions by left-leaning hatches, the ντ fractions by cross-hatches, and the νs fractions by

no hatches. The flavor contents shown are schematic only.

∆m2
41 and ∆m2

51, four moduli of mixing matrix parameters |Ue4|, |Uµ4|, |Ue5|, |Uµ5|,

and one CP-violating phase. The convention used in the following for this CP-phase

is:

φ54 = arg(U∗
µ5Ue5Uµ4U

∗
e4) (2.2)

Under these assumptions, the general oscillation formula in Eq. 2.1 can be rewrit-

ten as:

P (να → να) = 1− 4[(1− |Uα4|2 − |Uα5|2)(|Uα4|2 sin2 x41 + |Uα5|2 sin2 x51) +

+|Uα4|2|Uα5|2 sin2 x54] (2.3)

P (να → νβ) = 4|Uα4|2|Uβ4|2 sin2 x41 + 4|Uα5|2|Uβ5|2 sin2 x51 +

8|Uα5||Uβ5||Uα4||Uβ4| sin x41 sin x51 cos(x54 − φ54) (2.4)

for α = β and α 6= β, respectively. The formulas for antineutrino oscillations are

obtained by substituting φ54 → −φ54.
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2.3.2 Analysis Method

The analysis method used for CP violation studies at short baselines uses similar tools

to the ones described in [70], plus a realistic simulation of the MiniBooNE sensitivity

to
(−)
ν µ→

(−)
ν e oscillations, in both neutrino and antineutrino running modes.

Parameter estimation via Monte Carlo techniques

The analysis uses the same seven short-baseline datasets on νµ disappearance (from

the CCFR84 and CDHS experiments), νe disappearance (from the Bugey and CHOOZ

experiments), and νµ → νe oscillations (from the LSND, KARMEN2, and NOMAD

experiments) as in Ref. [70] to estimate the range of fundamental neutrino parameters

in (3+2) models that are experimentally allowed. However, in this case, CP-violating

values for the phase φ54 from Eq. 2.2 are also considered, allowing for different

neutrino and antineutrino oscillation probabilities in Eq. 2.4.

The Monte Carlo method used in the analysis to estimate the regions in neutrino

parameter space that are experimentally allowed by short-baseline results is very

similar to the one described in Ref. [70]. Slight modifications to this method have

been applied in this case, mainly because of the larger dimensionality of the parameter

set present in CP-violating models compared to CP-conserving ones. Rather than

generating neutrino masses and mixings in a random, unbiased, way, importance

sampling via a Markov chain Monte Carlo method is used [72, 73] , to better sample

the regions in parameter space that provide a good fit to short-baseline data. Given a

starting point (model) xi in the (∆m2
41, |Ue4|, |Uµ4|, ∆m2

51, |Ue5|, |Uµ5|, φ54) parameters

space, a trial state xi+1 = xi + e that depends only on the current state xi and

on the probability distribution function for the random vector e, is generated. The

probability for the trial state xi+1 to be accepted as the new current state for further

model random generation is given by the transition probability:

P (xi → xi+1) = min{1, exp[−(χ2
i+1 − χ2

i )/T ]} (2.5)
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where χ2
i and χ2

i+1 are χ2 values for the states xi and xi+1, quantifying the agreement

between the models and the short-baseline results used in the combined analysis, and

T is an effective “temperature” parameter. The results presented here are obtained

by combining various Markov chains with different initial conditions, probability dis-

tribution functions for e, and temperature parameters.

MiniBooNE Sensitivity

This analysis also provides realistic estimates of the sensitivity to
(−)
ν µ→

(−)
ν e oscil-

lations that can be achieved with the MiniBooNE experiment, in the framework of

CP-conserving and CP-violating (3+2) sterile neutrino models that are currently al-

lowed.

The MiniBooNE sensitivity to (3+2) sterile neutrino oscillations is computed us-

ing the full MiniBooNE simulations for neutrino fluxes, neutrino cross-sections, event

reconstruction and particle identification in the detector, as done in the MiniBooNE

Run Plan [68]. The analysis includes the expected neutrino statistics for 1021 pro-

tons on target in both neutrino and antineutrino running mode, background levels to

the νe/ν̄e appearance searches from particle misidentification and intrinsic νe’s in the

beam, systematic uncertainties associated with those backgrounds, and efficiency in

reconstructing and identifying the oscillation signal.

The expected electron neutrino rates for full νµ → νe transmutation as a function

of neutrino energy Eν are shown in Fig. 2.2, for both neutrino and antineutrino run-

ning modes. These distributions are weighted according to the oscillation probability

formula in Eq. 2.4 to estimate the number of oscillation signal events for any (3+2)

model prior to event reconstruction and particle identification. The sensitivity calcu-

lation takes into account the differences in event rates in antineutrino versus neutrino

running modes (about a factor of four difference), and the neutrino contribution to

the overall event rate in antineutrino mode (a contribution of about 30%), which has

the effect of washing out CP-violating asymmetries. The MiniBooNE sensitivities
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Figure 2.2: Expected MiniBooNE electron neutrino rates for full νµ → νe transmutation

as a function of neutrino energy Eν , in neutrino (panel a)) and antineutrino (panel b))

running modes. The solid histograms are for neutrinos, the dashed ones for antineutrinos.

The histograms are normalized such that the overall rate in neutrino running mode is equal

to one.

for 1021 protons on target presented in the following can be considered conservative,

to the extent that they assume event counting only, and no fit to the shape of the

neutrino energy distribution of the signal is performed.

2.3.3 Results

CP-Conserving Case

Figure 2.3 shows predictions for the oscillation signals to be expected in MiniBooNE

neutrino and antineutrino modes, in the CP-conserving, (3+2) sterile neutrino model

scenario. The MiniBooNE signal expectations are given in terms of the oscillation



63

0

2

4

6

8

0 0.1 0.2 0.3 0.4

∆χ
2

0

0.1

0.2

0.3

0.4

0 2 4 6 8

∆χ2

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

pBooNE (10-2)

p–

B
oo

N
E
 (

10
-2

)

Figure 2.3: Expected oscillation probabilities at MiniBooNE in neutrino and antineutrino

running modes, for CP-conserving (3+2) models. See text for details.

probability of Eq. 2.4, weighted by the full transmutation rates:

(−)
p BooNE=

∫
dE p(νµ → νe)[

(−)

N 0 (ν)+
(−)

N 0 (ν̄)]∫
dE [

(−)

N 0 (ν)+
(−)

N 0 (ν̄)]

(2.6)

where E is the neutrino energy, p(νµ → νe) is the oscillation probability of Eq. 2.4

in the CP-conserving case (i.e, φ54 = 0 or π), N0(ν) and N0(ν̄) are the neutrino and

antineutrino full-transmutation rate distributions in neutrino running mode from Fig.

2.2a), and N̄0(ν) and N̄0(ν̄) are the neutrino and antineutrino full-transmutation rate

distributions in antineutrino running mode from Fig. 2.2b).

The bottom left panel in Figure 2.3 shows the region in (pBooNE, p̄BooNE) space

that is allowed at the 90% and 99% confidence level (2 dof) by existing short-

baseline data used in the analysis, including LSND. The star indicates the best-fit, at
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Figure 2.4: Expected oscillation significances at MiniBooNE in neutrino and antineutrino

running modes, for CP-conserving (3+2) models. See text for details.

pBooNE ' p̄BooNE ' 0.14 · 10−2. The effect of “fake” CP-violation due to spectrum

differences in neutrino and antineutrino running modes, which would manifest itself

as a departure from the dotted line in the bottom left panel of Fig. 2.3, is at the few

percent level at most.

The top left and bottom right panels in Fig. 2.3 show the 1-dimensional pro-

jections of the χ2 contours obtained from existing short-baseline data, as a function

of pBooNE and p̄BooNE, respectively. The dashed lines at ∆χ2=2.70 and 6.63 indi-

cate the 90% and 99% CL regions, respectively (1 dof). MiniBooNE is expected to

measure an oscillation probability in excess of ' 0.07 · 10−2 in the current neutrino

running mode, if CP-conserving (3+2) models are correct.

Figure 2.4 is the same as Fig. 2.3, with the exception that the MiniBooNE
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sensitivities pBooNE/δpBooNE and p̄BooNE/δp̄BooNE are shown instead of the oscilla-

tion probabilities pBooNE and p̄BooNE. As mentioned before, the 1 σ uncertainties

δpBooNE and δp̄BooNE associated with the measurement of the oscillation probabilities

in neutrino and antineutrino running modes include both the statistical uncertainty

of the oscillation signal prediction (for 1021 protons on target), and the systematic

uncertainty of the background prediction.

The bottom left panel in Fig. 2.4 shows that the antineutrino oscillation probabil-

ity significance is always lower than the neutrino oscillation probability significance,

for allowed, CP-conserving (3+2) sterile neutrino models, because of the inherent

lower event statistics. Moreover, it is found that the most likely MiniBooNE oscilla-

tion significances in an event counting only analysis are about 5 σ in neutrino mode,

and 4 σ in antineutrino running modes. We note here that these best-fit MiniBooNE

oscillation significances are obtained by including several null short-baseline results

in the analysis, which tend to reduce the magnitude of the LSND-only neutrino os-

cillation result.

The top left panel in Fig. 2.4 shows that the MiniBooNE 99% CL sensitivity

(1 dof), defined as pBooNE/δpBooNE ≡
√

6.63 = 2.57, just covers all of the neutrino

mode oscillation signals from CP-conserving, (3+2) models allowed at 99% CL (1

dof).

CP-Violating Case

The same analysis methods and formalism presented above is now applied to CP-

violating, (3+2) sterile neutrino models. In this case, the CP-violating phase φ54 can

assume any value between 0 and 2π, and the neutrino and antineutrino oscillation

probabilities p(νµ → νe) and p(ν̄µ → ν̄e) are generally different. Therefore, the

oscillation probabilities in neutrino and antineutrino running modes, averaged over



66

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

pBooNE (10-2)

p–

B
oo

N
E
 (

10
-2

)

Φ54=0

Φ54=π/2

Φ54=π

Φ54=3π/2

Figure 2.5: Illustration of oscillation probabilities to be expected at MiniBooNE in neutrino

and antineutrino running modes, for CP-violating, (3+2) sterile neutrino models. For this

particular plot, neutrino masses and mixings are fixed to the values given in the text, while

the CP-violating phase φ54 is allowed to vary between 0 and 2π.

the MiniBooNE spectra, now read:

(−)
p BooNE=

∫
dE [p(νµ → νe)

(−)

N 0 (ν) + p(ν̄µ → ν̄e)
(−)

N 0 (ν̄)]∫
dE [

(−)

N 0 (ν)+
(−)

N 0 (ν̄)]

(2.7)

Figure 2.5 illustrates the order of magnitude of the CP-violating effects to be

expected. In this plot, neutrino masses and mixings are fixed to their best-fit values

of: ∆m2
41 = 0.92 eV2, |Ue4| = 0.123, |Uµ4| = 0.199, ∆m2

51 = 21 eV2, |Ue5| = 0.039,

|Uµ5| = 0.215, and the only parameter that is allowed to vary is the CP-violating

phase φ54. In this particular case, neutrino/antineutrino running mode oscillation

probability differences as big as a factor of two can be obtained, near maximal CP-

violation (φ54 = π/2 or 3π/2).

Figure 2.6 shows the oscillation probabilities to be expected at MiniBooNE in

neutrino and antineutrino running modes, in a CP-violating, (3+2) scenario. Un-
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Figure 2.6: Expected oscillation probabilities at MiniBooNE in neutrino and antineutrino

running modes, for CP-violating (3+2) models.

like Fig. 2.5, all parameters (∆m2
41, |Ue4|, |Uµ4|, ∆m2

51, |Ue5|, |Uµ5|, φ54) are now al-

lowed to vary within the constraints provided by existing short-baseline oscillation

results. Compared to the CP-conserving case of Fig. 2.3, the best-fit point (indi-

cated by a star) does not change significantly; however, large asymmetries due to

CP-violation are now possible, shown by departures from the dashed line in the bot-

tom left panel of Fig. 2.6. The general trend is that the 2-dimensional allowed

region in (pBooNE, p̄BooNE) space is tilted more horizontally compared to the dashed

line p̄BooNE = pBooNE, indicating that existing short-baseline results constrain more

ν̄µ → ν̄e than νµ → νe oscillations.

In the CP-violating case, MiniBooNE is expected to measure an oscillation prob-

ability in excess of ' 0.04 · 10−2 in the current neutrino running mode.



68

0

2

4

6

8

0 5 10 15

∆χ
2

0

5

10

15

0 2 4 6 8

∆χ2

0

5

10

15

0 5 10 15

pBooNE / δpBooNE

p–

B
oo

N
E
 / 

δp–

B
oo

N
E

Figure 2.7: Expected oscillation significances at MiniBooNE in neutrino and antineutrino

running modes, for CP-violating (3+2) models.

In Fig. 2.7, we show the expected MiniBooNE significances in neutrino and

antineutrino running modes, for an oscillation signal in the CP-violating (3+2) sce-

nario. If CP-violation is present, it is possible to have, for certain models, a higher

oscillation probability significance in MiniBooNE antineutrino mode rather than in

neutrino running mode. In particular, the MiniBooNE 90% CL sensitivity just covers

the 99% CL (1 dof) allowed oscillation range in antineutrino mode, and a lower cover-

age is obtained in neutrino mode. Opposite effects are also possible, and significances

of more than 10 σ in neutrino mode could be observed at MiniBooNE in this case.

From this analysis, it is clear that a MiniBooNE antineutrino run would be highly

desirable to fully address the LSND antineutrino oscillation signal indication.

Finally, we discuss what are the present constraints on the CP-phase φ54 that
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Figure 2.8: Current limits on the CP-violating phase φ54 from current short-baseline results,

and significance of a CP asymmetry measurement expected at MiniBooNE, ACP /δACP .

are currently available from a CP-violating, (3+2) analysis of short-baseline data,

and what is the MiniBooNE CP-asymmetry sensitivity for these allowed values. The

CP-asymmetry is defined here as:

ACP =
pBooNE − p̄BooNE
pBooNE + p̄BooNE

(2.8)

The uncertainty on the MiniBooNE CP-asymmetry measurement, δACP , is ob-

tained here by standard error propagation, assuming the δpBooNE and δp̄BooNE un-

certainties to be uncorrelated. This assumption should be reasonable, to the extent

that the MiniBooNE measurements are statistics-dominated, and it represents a con-

servative assumption.

The top left panel in Fig. 2.8 shows that all values for the CP-phase φ54 are

presently allowed at the 99% confidence level, and that CP-violating, (3+2) models
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with small degrees of CP violation are marginally preferred.

The bottom left plot shows that large CP asymmetry significances are possible

(but not required) for maximal CP-violation, given by phases of around φ54 = π/2

and 3π/2. The dotted lines in the bottom right panel indicate the MiniBooNE 90%

and 99% CL sensitivity lines to a CP-violating asymmetry, defined as ACP /δACP =
√

2.70 = 1.64 and
√

6.63 = 2.57, respectively. The bottom left and right plots indicate

that a measurement of CP asymmetry at MiniBooNE with more than 3 σ significance

is possible under favorable circumstances, for CP-violating (3+2) models currently

allowed at the 99% confidence level, even though no significant CP asymmetry would

be observed at MiniBooNE in the most likely (3+2) scenarios.



Chapter 3

The MiniBooNE Neutrino Beam

and the Magnetic Focusing Horn

In this Chapter, the MiniBooNE neutrino beamline is described. Section 3.1 gives

a brief overview of the Fermilab 8 GeV neutrino beamline as a whole. Section 3.2

describes in more detail the MiniBooNE neutrino focusing horn, which has been the

hardware project followed during the course of this thesis. Predictions on the neutrino

fluxes at the MiniBooNE detector from this beamline are covered in the next Chapter.

3.1 Overview of the MiniBooNE Neutrino Beam

The MiniBooNE neutrino beam is a high-intensity, conventional neutrino beam pro-

duced via the decay of mesons and muons in a decay region following a target hall

region, where meson production and focusing occurs. Mesons are produced in the

target hall via inelastic interactions of 8 GeV kinetic energy protons from the Fermi-

lab Booster accelerator in a thick beryllium target, and then focused by a magnetic

focusing horn surrounding the target and by a collimator system located downstream

of the horn. An overview of the 8 GeV beamline, target hall, decay region and

71
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Figure 3.1: Site map of the Fermi National Accelerator Laboratory, showing the location of

the 8 GeV neutrino line, the MiniBooNE target hall, decay region, and detector. A possible

location for a future second detector is also indicated.

MiniBooNE detector locations is shown in Fig. 3.1.

3.1.1 The 8 GeV Neutrino Beamline and the Primary Proton

Beam

The primary beam [74, 76] uses protons accelerated to 8 GeV kinetic energy by

the Fermilab Booster, and by the earlier stages in the Fermilab proton accelerator

complex: the Cockroft-Walton pre-accelerator and the Linear Accelerator. Selected

batches containing approximately 5·1012 protons are extracted via a pulsed magnet in

the Fermilab Main Injector tunnel, prior to further acceleration by the Main Injector,

and bent by about 80 degrees toward the MiniBooNE target hall via dipole magnets.

Focusing is provided by permanent and electro-magnet quadrupoles located in the 200

m long beamline section between the beam extraction location and the MiniBooNE
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target location.

Particle trajectories are monitored on a pulse-by-pulse basis via a system of de-

vices measuring the beam transverse position, direction and profile at various longitu-

dinal positions along the beamline. An automatic beamline correction program uses

the measured beam positions to correct in real-time minor deviations from the nom-

inal beam trajectory, by adjusting the magnet settings. The typical beam alignment

and divergence measured by the beam position monitors located near the target are

within 1 mm and 1 mrad of the nominal target center and axis direction, respectively;

the typical beam focusing on target measured by beam profile monitors is of the order

of 1-2 mm (RMS) in both the horizontal and vertical directions. These parameters

are well within the experiment requirements, dictated by the 5 mm in radius, 71 cm

long, cylindrical beryllium target.

The number of protons delivered to the MiniBooNE target is measured for each

proton batch, using a toroid located near the target along the beamline. The toroid

calibration, performed on a pulse-by-pulse basis, provides a 1% accuracy on the mea-

surement of the number of protons to MiniBooNE.

Protons that are not properly captured by the beamline optics may yield beam

losses along the beam transport line, and may generate hazardous radio-activation

of beamline elements, air and ground water. Therefore, several monitors measuring

localized beam losses are located along the beamline. Moreover, a monitoring system

measuring the total beam losses along the beamline is used, based on the difference

between the measured beam intensities at the beamline initial and final locations. A

beam permit system based on these (and other) inputs is used to promptly inhibit

beam to the MiniBooNE target hall if abnormal conditions occur.

The readouts of beam control (e.g., magnet settings) and monitoring systems

(e.g., beam intensity, position, and losses) are recorded and time-stamped for each

proton batch, and the beam datastream is synchronized and merged with the corre-

sponding MiniBooNE detector datastream.



74

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500 600 700 800

2003 2004

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500 600 700 800

Days since Oct 23, 2002

D
ai

ly
 n

um
be

r o
f p

ro
to

ns
 (1

018
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
te

gr
at

ed
 n

um
be

r o
f p

ro
to

ns
 (1

020
)

Figure 3.2: Number of protons delivered to the MiniBooNE target in the period between

October, 2002, and January, 2005. The histogram shows the daily number of protons, the

solid line the integrated number of protons.

The operation of the 8 GeV beamline has been very successful since the Septem-

ber 2002 start-up, with downtimes dominated by scheduled shutdowns of the accel-

erator complex. Over this period of time, the delivery of protons on the MiniBooNE

target has been mostly dictated by the limits imposed on beam losses within the

Booster accelerator, and not by losses in the 8 GeV beamline or by hardware limita-

tions. Figure 3.2 shows the number of protons delivered to MiniBooNE since start-up:

the positive trend over time in the daily number of protons is indicative of a reduction

in the fraction of Booster beam losses. In the period October 2002 - January 2005,

more than 4.2 · 1020 protons have been delivered to MiniBooNE.

3.1.2 Target Hall and the Secondary Meson Beam

Primary protons from the 8 GeV beamline strike a thick beryllium target located

in the MiniBooNE target hall. Hadronic interactions of the protons with the tar-
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get material produce a beam of secondary mesons (pions and kaons). The target

[75] is made of seven cylindrical slugs that are 10.2 cm in length and 0.48 cm in

radius, corresponding to a total target length of 71 cm, or about 1.7 inelastic inter-

action lengths. The target geometry is dictated by the requirement of having a large

fraction of primary protons that inelastically interact within the target, and a small

fraction of reinteractions for the secondary mesons. The multi-slug design is dictated

by the requirement of dealing with the thermal shock within the target due to the

beam proton pulses. The target material choice, beryllium, is dictated mainly by the

requirement of minimizing the radioactivity levels in the target hall due to long-lived

isotopes produced by the proton beam exposure.

The target is equipped with a closed air cooling system, in order to dissipate the

power P ' 600 W deposited by the primary and secondary beam in the target under

normal operation (5 · 1012 protons per batch, five batches per second). The time-

averaged beam heat load is efficiently removed by flowing air longitudinally along the

target, at a volumetric rate of dV/dt ' 8·10−3 m3/s. A redundant system of radiation-

hard devices monitor the air flow rates and temperatures at various locations in the

target cooling system, and inhibit beam if abnormal conditions are measured. Typ-

ical measured values for the temperature of the air exiting from the target area are

of the order of: Tout = Tin + P/(cP ρdV/dt) ' 100 degC, where Tin ' 36 degC is

the temperature of the air coolant entering the target area, cP = 103 J/(kg · K) is

the air specific heat at constant pressure, ρ = 1.20 kg/m3 is the air density, and

P and dV/dt are defined above. Target temperatures of the order of 120 degC are

inferred from the measured air temperature Tout, well below the temperatures that

may cause permanent damage (softening) to the beryllium and aluminum materials

in the target/horn system.

The beryllium target is surrounded by a magnetic focusing horn [75, 77], bend-

ing the positively-charged secondary particles that emerge from the interactions in

the target along the direction pointing to the MiniBooNE detector. The focusing is
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produced by the toroidal magnetic field present in the air volume between the horn’s

two coaxial conductors. The magnetic field is produced by current flowing along the

horn inner (small radius) conductor, and back along the outer (large radius) con-

ductor. The polarity of the horn current flow can be switched, in order to focus

negatively-charged mesons, and therefore produce an anti-neutrino beam instead of a

neutrino one. The heat produced in the horn inner conductor by current and by beam

deposition is removed via a water cooling system. Details about the physics-driven

requirements, mechanical and electrical design, testing, and operational performance

for the horn are given in Section 3.2.

3.1.3 Decay Region and the Tertiary Neutrino Beam

The beam of focused, secondary mesons emerging from the target/horn region is

further collimated via passive shielding, and allowed to decay into neutrinos in a

cylindrical decay region filled with air, 50 m long and 90 cm in radius [75]. A beam

absorber located at the end of the decay region stops the hadronic and muonic com-

ponent of the beam, and only a pure neutrino beam pointing toward the detector

remains, mostly from π+ → µ+νµ decays. Details about the meson and muon decays

occurring in the decay region that are of relevance for the MiniBooNE neutrino flux

are described in Chapter 4.

The beamline design allows to reduce the length of the decay region to a half of

its current length, by lowering an intermediate, movable absorber currently located

above the decay pipe, at a distance of 25 m from the target.

The decay region is also instrumented with a detector capable of measuring the

momentum, energy, and charge sign of muons from the decays of kaons in the sec-

ondary beam. The muon counter consists of a muon drift pipe, subtending a 7o angle

with respect to the axis of the decay region and intersecting it 9 m upstream of the

50 m absorber, and of a collimator, spectrometer and range stack detector located
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near the 50 m absorber. The kinematic constraints imposed on the muons by this

geometrical setup allows the selection of the higher transverse momentum (pt) muons

produced in kaon decays, distinguishing them from the lower pt muons from pion

decays, and therefore to constrain the kaon content in the secondary beam.

3.2 The MiniBooNE Neutrino Focusing Horn

In the following, the MiniBooNE horn is described in greater detail. The horn physics-

driven requirements and design, horn testing, and horn performance are discussed.

3.2.1 Horn Physics-Driven Requirements and Design

The MiniBooNE horn design, and more generally the beamline design, are driven by

the requirements for the MiniBooNE νµ → νe search in the ∆m2 ' 1 eV2 range,

discussed in Chapter 2. In order to maximize the νµ → νe sensitivity in the ∆m2 '

1 eV2 range (as suggested by the LSND result), the beamline is designed to: a)

provide 1021 protons on target in a timely manner, b) maximize the νµ flux at the

detector between 0.3 and 1.3 GeV, c) minimize the intrinsic νe flux contamination in

the beam, d) be operated in both neutrino and antineutrino running modes, and e)

understand well the neutrino flux systematics.

The MiniBooNE horn was designed with these physics goals in mind. First, most

of the design criteria for the two MiniBooNE horns built so far were dictated by

the necessity to withstand an average (instantaneous) pulse repetition rate of 5 (15)

Hz over a lifetime of approximately 100 million pulses at 170 kA peak horn current,

to meet the proton delivery requirements (goal a)). Second, the horn geometrical

shape and horn current specifications are essential factors in meeting the νµ flux

optimization requirements (goal b)). Moreover, the horn power supply design allows

to switch horn current polarity, and therefore neutrino sign selection (goal d)).
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Material aluminum alloy 6061-T6

Inner conductor outer radius 2.2-6.54 cm

Outer conductor inner radius 30 cm

Length 185 cm

Peak current 170 kA

Maximum magnetic field 1.5 Tesla

Current pulse duration (half-period) 140 µs

Voltage on horn 3 kV

Skin depth 1.4 mm

Average (maximum) repetition rate 5 (15) Hz

Power dissipation by ohmic losses 2.5 kW

Power dissipation by beam deposition 0.8 kW

Cooling water flow rate 1 l/s

Design lifetime 108 pulses in 1 year at 97.5% CL

Table 3.1: Horn mechanical and electrical design properties.

Some of the most important horn mechanical and electrical design characteristics

are listed in Tab. 3.1. The horn material is an aluminum alloy, particularly suitable

for its high electrical conductivity, welding ability, resistance to corrosion, and low

residual radio-activation. The geometrical shape of the horn, and in particular the

shape of its inner conductor, is optimized by a full simulation for the expected neutrino

fluxes at MiniBooNE. The inner conductor shape can be seen in the left panel of Fig.

3.3. The inner conductor is a 2.2 cm outer radius cylinder in the horn upstream

half, while it is composed of two, larger radii (between 2.2 and 6.54 cm), intersecting

cones in the horn downstream half, to avoid over-focusing of positively-charged tracks

produced at small angles within the target. The total horn length of 185 cm, and the

horn peak current of 170 kA, are also chosen based on simulations aimed at optimizing

the MiniBooNE neutrino flux. The horn current pulse is a half-sinusoid with half-
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Figure 3.3: Left: drawing of the MiniBooNE horn and its water cooling system; the horn

outer conductor surface is made transparent to show the horn inner conductor shape and

the target. Right: points indicate measurements of the azimuthal component of the horn

magnetic field Bφ divided by the peak horn current I, as a function of the distance r from

the horn axis. The solid line is the prediction from Eq. 3.2, and the solid vertical line is

the inner radius of the horn outer conductor.

period T/2 of approximately 140 µs, timed such that the 1.6 µs long beam spill

crosses the horn/target assembly during peak horn current. Given this horn current

angular frequency ω = 2π/T , and the aluminum permeability µ and conductivity σ,

the skin depth δ =
√

2/(µσω) is 1.4 mm, yielding a surface magnetic field inside the

aluminum inner conductor with negligible impact on the neutrino fluxes.

The horn electrical circuit and mode of operation can be described, in its simplest

terms, by an under-damped LCR circuit. The energy is initially stored in a capacitor

bank with capacitance C=1,344 µF, charged by the horn power supply. Beam on

target triggers the capacitor bank discharge, via silicon controlled rectifiers (SCR),

into the horn load. The electrical connection between the power supply and the horn

is provided by four, high-current transmission lines, characterized by a planar design

(striplines) in order to minimize their inductance. The horn current pulse is given by:

i(t) =
V0

ωL
e−βt sin ωt (3.1)
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Component Inductance (µH) Resistance (mΩ) Power (kW)

Capacitor bank plus losses 0.37 3.00 31.0

Transmission line 0.34 0.27 2.8

Horn 0.70 0.24 2.5

Total 1.41 3.51 36.3

Table 3.2: Resistive and inductive impedances of the various components of the horn elec-

trical circuit, as well as power dissipation by ohmic losses for 5 Hz average repetition rate,

170 kA peak horn current operation.

where V0 ' 6.0 kV is the capacitor bank voltage corresponding to a peak horn cur-

rent of 170 kA, β = R/(2L), ω = ω0

√
1− γ2, ω0 = 1/

√
LC, γ = (R/2)

√
C/L, and

R, L are the resistive and inductive impedances of the horn circuit, summarized in

Tab. 3.2. After the discharge, a separate circuit is used to recover most of the energy

initially stored in the capacitor bank; the energy lost from ohmic losses is replaced

by the charging power supply, in time for the next discharge cycle to begin. Under

typical operations, a 15 Hz train of 5-10 horn pulses is used, interleaved by a ' 2 s

hold-off time. The waveforms of the horn power supply voltage and current (including

the charge recovery) can be seen in Fig. 3.4, showing one of the graphical interfaces

used to monitor the horn operation.

In order to dissipate in an effective way the power deposited in the horn inner

conductor by ohmic losses and beam energy loss, the MiniBooNE horn uses a water

cooling system. Eighteen nozzles external to the horn outer conductor, and vibra-

tionally isolated from the horn itself, continuously spray water on the horn inner

conductor through openings in the horn outer conductor, at a flow rate of about 1

liter per second. The radioactive cooling water is kept in a closed circuit, equipped

with a water to water heat exchanger to remove heat, and a filter to remove particu-

late content in the water.

Given this current pulse, the toroidal magnetic field between the horn inner and
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Figure 3.4: Current and voltage waveforms at the horn power supply.

outer conductors at peak horn current I0 ' V0 exp[−πβ/(2ω)]/(ωL) can be accurately

approximated by the familiar expression for an infinitely long, straight conductor (in

SI units):

Bφ =
µ0

2π

I0

r
, Br = Bz = 0 (3.2)

where µ0 is the magnetic permeability of air, and r is the distance from the horn axis.

In order to quantify the performance of the MiniBooNE horn design summarized

above, we define the neutrino focusing factor merit factor as:

(−)

F (E) =
φ(E;

(−)
ν µ)

φ0(E;
(−)
ν µ)

(3.3)

where φ0(E;
(−)
ν µ) is the simulated muon (anti)neutrino flux at the MiniBooNE de-

tector for perfect focusing, and φ(E;
(−)
ν µ) is the corresponding flux prediction for the

MiniBooNE horn in various operating modes. Perfect focusing is defined here as the

neutrino flux obtained by ideally transporting on axis all electrically-charged particles
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Figure 3.5: Focusing merit factor as a function of neutrino energy Eν of the MiniBooNE

horn for muon neutrinos (a)) and muon antineutrinos (b)), expressed as fraction of flux at

the MiniBooNE detector for perfect neutrino focusing. The solid, dashed, dotted lines are

for neutrino, horn-off, and antineutrino running modes, respectively.

reaching the downstream end of the horn, and simultaneously rotating their momen-

tum vector to be at zero angle with respect to the beam axis. The horn operating

conditions that are simulated here to quantify the horn performance are: neutrino

running mode (+170 kA peak horn current), horn-off running mode (zero horn cur-

rent), and antineutrino running mode (-170 kA peak horn current). The convention

for the horn current flow taken here is such that a positive horn current corresponds

to a current flowing along the horn inner conductor and then back along the outer

conductor, thereby focusing positively-charged tracks.

The horn performance is evaluated with a full GEANT4 simulation of the Mini-

BooNE target/decay region that includes all physics processes relevant for neutrino

production. This simulation is described in detail in Chapter 4. The MiniBooNE

horn design is very effective in boosting the
(−)
ν µ flux at the MiniBooNE detector,

and in selecting either a neutrino or an antineutrino beam. Specifically, for typical

muon neutrino energies of 0.7 < Eν < 0.8 GeV, the horn neutrino merit factor in
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neutrino running is predicted to be about one quarter, about six times higher than

the neutrino merit factor in horn-off running (see Fig. 3.5a); a similar merit factor

is predicted for antineutrinos in antineutrino running (see Fig. 3.5b). Moreover, the

merit factor for “wrong sign” neutrinos (e.g. antineutrinos in neutrino running) is

about two times smaller than the corresponding factor in horn-off running, in the

same neutrino energy range.

3.2.2 Horn Testing

Prior to installation in the beamline, each of the two horns built so far for the Mini-

BooNE experiment has been thoroughly tested. Tests include magnetic field, me-

chanical vibration, and cooling measurements, as well as a fatigue test.

A map of the horn magnetic field has been measured in more than 300 locations

using an inductive coil [78]. In a cylindrical coordinate system (z, ϕ, r) with respect

to the horn axis, the measurements show no significant dependence of the nonzero

azimuthal component of the field as a function of the z and ϕ positions within the

horn field region, while the expected 1/r radial dependence of the field is confirmed

in the explored radial range, 3.9 cm < r < 30 cm, as shown in the right panel of Fig.

3.3. Moreover, the measured longitudinal component of the field is consistent with

zero, given the coil alignment accuracy achieved in the measurements.

Detailed simulations and measurements of the horn vibrational response to high-

current pulses were also performed, and the impact of the horn mechanical stresses on

the horn lifetime were evaluated. The studies allowed optimization of material thick-

nesses throughout the horn, in order to ensure adequate horn lifetime, while keeping

to a minimal level the impact of particle interactions in aluminum on neutrino fluxes.

The vibrational measurements indicated that, despite the high repetition rate, no

pileup of horn vibrational modes from one current pulse to another occur.

The necessary water cooling flow rate was determined experimentally, by mea-
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suring the heat transfer coefficient from aluminum to water for spray cooling, in a

test setup with a geometry identical to the MiniBooNE horn one. In the test setup,

the inner conductor, withstanding power deposition by electric current and beam,

was simulated with an electrically heated tube. The cooling measurements indicated

that a water flow rate of the order of 1 l/s is sufficient to provide the necessary,

> 3000 W/(m2degC), heat transfer coefficient.

Finally, each MiniBooNE horn has successfully been subject to a fatigue test,

consisting in pulsing the horn in nominal conditions (5 Hz average repetition rate,

170 kA peak horn current), for a total of 10 million current pulses.

3.2.3 Horn Performance

Over the period between September, 2002, and January, 2005, more than 108 proton

batches were delivered from the Booster accelerator to the MiniBooNE target hall,

with each proton batch triggering a 170 kA peak current pulse on the MiniBooNE

horn. The daily average repetition rate and the integrated number of horn pulses, as

a function of time, are shown in Fig. 3.6.

As discussed above, the horn repetition rate over this running period has been

determined mostly by the FNAL Booster accelerator mode of operation. In particular,

the radiation concerns due to proton losses in the Booster did not permit pulsing

of the horn at the design average repetition rate of 5 Hz throughout the run; the

design repetition rate has been approached in recent operation. In the summer of

2004, approximately one month before a three-month long scheduled shutdown of the

accelerator complex, the first MiniBooNE horn failed after 8.5 · 107 pulses due to a

ground fault. The MiniBooNE horn/target assembly was successfully replaced during

the summer 2004 shutdown, and the second horn has been pulsed more than 1.5 · 107

since then.

The stability of horn operation over time has also been investigated, and proved
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Figure 3.6: Performance of the MiniBooNE horn in the period between October, 2002, and

January, 2005. The histogram shows the daily average horn repetition rate, the solid line

the integrated number of horn pulses. In the Figure, the integrated number of pulses has

been reset to zero after the horn replacement.

to be sufficiently reliable. The most important horn parameter to monitor in relation

to physics analyses is the peak horn current. Fig. 3.7 shows the daily average peak

horn current obtained by averaging over all horn pulses in the day. Over the more

than two years of operation, the peak horn current has not changed by more than

1%. It is estimated that a 1% variation in the peak horn current would cause only a

0.7% variation in the neutrino flux at the MiniBooNE detector.

In Section 3.2.1, we have described the expected focusing performance of the

MiniBooNE horn as a function of neutrino energy, expressed in terms of fraction

of perfect focusing neutrino flux. In this section, we discuss the measured rates of

neutrino candidate events in the MiniBooNE detector per proton on target, for both

horn-on, neutrino running mode, and horn-off mode.

MiniBooNE neutrino candidates are defined here in a very simple way, using

exclusively MiniBooNE PMT hit multiplicity and timing, and no event reconstruction.
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Figure 3.7: Performance of the MiniBooNE horn in the period between October, 2002, and

January, 2005. The points and error bars show the mean and the RMS of the peak horn

current averaged over one day.

Details on the MiniBooNE detector are given in Chapter 6, and only the detector

aspects necessary to define neutrino candidates in this context are explained below.

The sample of neutrino candidates is determined by triggering on beam on target,

and uses the information on the PMT charges and times in the detector recorded over

a 19.2 µs time interval. Next, the PMT activity is split into subevents, defined as

clusters of time-related PMT hits of a typical duration of about 100 ns. The event

splitting algorithm is introduced to tag the delayed light produced by electrons from

muon decays, generally occurring several hundreds of nanoseconds after the neutrino

interaction; the presence of electrons from muon decays in the detector generally cause

the event to be split in > 1 subevents. The simple neutrino event selection applied

here requires less than 6 PMT hits in the veto region for the first subevent in the event,

in order to reject cosmic ray muons crossing the detector in coincidence with beam

activity. Moreover, the PMT hit multiplicity in the main detection region for the first

subevent is required to be greater than 200, in order to reject the < 52.3 MeV electrons
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Running Mode Npot Nν Nν/Npot

Horn-on Neutrino 1.95 · 1020 218, 337 1.120 · 10−15

Horn-off 1.11 · 1019 2, 033 0.184 · 10−15

Table 3.3: Number of protons on target Npot, number of neutrino candidate events Nν ,

and ratio of neutrino candidate events to protons on target Nν/Npot, for selected periods of

horn-on neutrino running mode and for horn-off running mode.

produced by the decays-at-rest of cosmic ray muons occurring before the 19.2 µs-long

beam window. Overall, this simple event selection ensures a signal-to-background

ratio in excess of 1000, where “signal” indicates here a neutrino-induced event, while

“background” any other source of PMT activity in the MiniBooNE detector.

The number of protons on target are estimated from the readout of the toroid

located immediately upstream of the MiniBooNE target, as discussed in Section 3.1.1.

Moreover, beam quality cuts are applied to ensure that the protons hit the target,

the horn fires, and that the toroid readout does not differ in a significant way from

additional beam instrumentation located in the Booster neutrino beamline.

Table 3.3 shows the number of protons on target, the number of neutrino

candidate events, and the neutrino-to-proton ratio measured in MiniBooNE in both

horn-on and horn-off configurations over the running period October, 2002, to April,

2004. Most of the run time has been spent in horn-on, neutrino mode; two weeks

were devoted to horn-off running mode in April, 2004. We observe a 6-fold increase

in the neutrino candidate event rate per proton on target, Nν/Npot in Tab. 3.3, by

operating the horn in neutrino running mode, compared to horn-off mode.

This boost in neutrino interaction rate due to the horn focusing is crucial in

order to accomplish the main physics goal of the MiniBooNE experiment discussed

in Chapter 1, that is a νµ → νe oscillation measurement with sufficient sensitivity

in the neutrino mass and mixing parameter space indicated by the LSND signal. As

mentioned in the previous Chapter, the MiniBooNE νµ → νe sensitivity is dominated
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by the statistical uncertainty on the number of neutrino candidates, and therefore a

6-fold increase in neutrino rate roughly corresponds to a
√

6 increase in sensitivity.



Chapter 4

MiniBooNE Neutrino Flux

Predictions

In this Chapter, predictions for the muon neutrino and electron neutrino fluxes at

the MiniBooNE detector are presented. The program used to obtain the simulated

neutrino fluxes, its physics assumptions, and the flux predictions are described in

detail. Section 4.1 describes some generalities on the “beam Monte Carlo” code used;

Section 4.2 discusses the simulation of the beamline geometry, materials, and of the

primary proton beam; Sections 4.4, 4.5 and 4.6 summarize the physics input to the

simulation for the processes of most direct relevance for producing muon and electron

neutrinos at MiniBooNE; the flux predictions are given in Section 4.7 .

4.1 The Beam Monte Carlo Simulation Code

4.1.1 Inputs to Neutrino Flux Predictions

The purpose of the MiniBooNE beam Monte Carlo is to predict the fluxes at the

MiniBooNE detector for all relevant neutrino species (νµ, ν̄µ, νe, ν̄e) as a function of

neutrino energy, per proton on target and per unit area, and to obtain an accurate

89



90

estimate of the associated flux systematic uncertainties. The flux understanding is of

primary importance for most MiniBooNE analyses, including for example neutrino

cross-section measurements, and νµ → νe and νµ → ν6µ oscillation analyses.

The MiniBooNE flux prediction makes use of physics inputs both external and

internal to the experiment. The most important physics input that is external to

MiniBooNE is meson production data in proton-beryllium hadronic interactions for

proton beam momenta in the ∼ 10 GeV/c range, since the flux uncertainty is domi-

nated by the secondary meson production uncertainty. Therefore, the most important

design requirement of the simulation tool developed at MiniBooNE for neutrino flux

predictions is its flexible hadronic physics model interface.

In addition, the MiniBooNE data itself will provide inputs to the neutrino flux

predictions. First, under the assumption of no neutrino oscillations, the observation

of muon neutrinos at MiniBooNE will constrain the electron neutrino flux component

due to muon decays [79]. Second, neutrino fluxes from kaon decays will be constrained

by the measurement of muons from kaon decays in the Little Muon Counters along

the decay region.

4.1.2 Code Structure

Currently, the combination of two simulation programs is used at MiniBooNE to ob-

tain neutrino flux predictions. First, a GEANT4-based Monte Carlo code is respon-

sible for simulating the chain of processes beginning with primary protons hitting the

MiniBooNE target to the decay of secondary mesons and muons yielding neutrinos.

GEANT4 [80, 81] is a software package designed to simulate the passage of parti-

cles through matter. In particular, the GEANT4 application used at MiniBooNE

simulates:

1. the geometry and the materials present in the MiniBooNE target hall and decay

region;
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2. the physics processes governing the interactions of baryons, mesons and leptons

involved in neutrino production;

3. the generation of events, initiated by Booster primary protons specified accord-

ing to the beam optics;

4. the tracking of particles through the materials present in the target hall and

decay region, and through the horn magnetic field;

5. the storage of simulated data at various levels of refinement, from single physics

process information, to event-level information for the entire neutrino parentage

history.

A second, FORTRAN-based Monte Carlo code uses the output of the GEANT4 pro-

gram as input, and is responsible for generating the neutrino kinematics distributions

from meson and muon decays, and for obtaining the final neutrino fluxes extrapolated

at the MiniBooNE detector with negligible beam Monte Carlo statistical error.

The physics interface of GEANT4 allows the user to choose among a large variety

of built-in models, and also to easily implement custom-defined process cross-sections

and final state descriptions, making GEANT4 an ideal simulation toolkit for the Mini-

BooNE beam Monte Carlo. The class category hierarchy of the C++ based beam

Monte Carlo code follows the schematics given in Fig. 4.1 (taken from [81]).

4.2 Simulation of Beamline Geometry, Materials,

and Proton Beam

4.2.1 Geometry and Materials

The beam Monte Carlo program simulates the most relevant materials and volumes

present in the target hall and decay region. In Fig.4.2, four images from the beamline
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Figure 4.1: GEANT4 class categories [81]. Each box represents a class category. The circle

at the end of a straight line means that the class category which has this circle uses the other

line-connected category.

geometry simulation are shown. The images show the entire decay region, and details

of the target hall region, horn, and target. The volumes shown in red, blue, green are

made of beryllium, iron, and aluminum, respectively: the target is made of beryllium,

the horn is made of aluminum, the target hall shielding and collimation system, and

the absorber located at the end of the decay region, are made of iron. Concrete is
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Figure 4.2: The MiniBooNE beamline geometry implemented in the simulation. The pic-

tures show the entire 50 m decay region (top left), and details of the target hall region (top

right), horn (bottom left), and target (bottom right).

used for the decay region walls, and concrete is also present in the target hall and

absorber regions.

4.2.2 Primary Proton Event Generator

The event generator in the beam Monte Carlo simulation is very simple: one pri-

mary proton per event is generated with 8 GeV kinetic energy, directed toward the

beryllium target. The beam optics are realistically simulated by introducing some

smearing in the initial transverse position (x, y) and angular divergence (θx, θy) of the

beam, in the coordinate system where the z axis points along the beam direction, and

y points upwards. Also, the mean (x0, y0) positions and the mean (θx,0, θy,0) directions
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of the primary beam can be changed for systematic study purposes, together with the

longitudinal position z0 for the primary proton at birth; all beam optics parameters

refer to this longitudinal position. The position and angular smearing are described

by Gaussian distributions. More specifically, the initial position and momentum of

the generated primary proton are 1:



x = x0 + σxran1

y = y0 + σyran2

z = z0

px =
√

E2
p −m2

p(θx,0 + σθxran3)

py =
√

E2
p −m2

p(θy,0 + σθyran4)

pz =
√

E2
p −m2

p − p2
x − p2

y

(4.1)

where ran1, ran2, ran3, ran4 are four random numbers drawn from a gaussian distri-

bution of mean zero and variance one, Ep = Kp +mp, where Kp=8 GeV and mp is the

proton mass. The MiniBooNE beam optics parameters (x0, σx, y0, σy, z0, θx,0, σθx ,

θy,0, σθy) used in the flux simulation are given in Tab. 4.1. These values are deter-

mined from detailed simulations of Booster protons in the 8 GeV Fermilab neutrino

line, and cross-checked with measurements from several beam detectors measuring

beam positions, directions, and profiles at various locations along the beamline, as

discussed in Chapter 3. It is estimated that this choice of beam optics parameters

yields a 99.8% targeting efficiency, in good agreement with the design parameters.

1The small-angle approximation is assumed throughout the simulation of primary beam param-

eters.
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Parameter x0 σx y0 σy θx,0 σθ,x θy,0 σθ,y

Value 0 1.51 mm 0 0.75 mm 0 0.66 mrad 0 0.40 mrad

Table 4.1: Beam optics parameters used in the beam Monte Carlo simulation. See text for

definitions. The parameters correspond to an initial longitudinal position along the beam

direction for the generated protons of z0 =-1 cm, and to a coordinate system having the

MiniBooNE beryllium target located at: 3.5 cm < z < 74.6 cm,
√

x2 + y2 < 4.76 cm.

Neutrino Flavor νµ ν̄µ νe ν̄e

Flux fraction (% ) 92.7 6.6 0.6 0.1

Table 4.2: Neutrino flavor composition of the MiniBooNE neutrino flux in neutrino run-

ning, as predicted by the beam Monte Carlo simulation.

4.3 Properties of Typical Neutrinos Reaching the

MiniBooNE Detector

In Sections 4.4, 4.5, 4.6, we discuss several physics processes of relevance for Mini-

BooNE flux predictions. As an introduction to these sections, we first discuss some

properties of typical events yielding neutrinos at the MiniBooNE detector, as pre-

dicted by the beam Monte Carlo simulation. This Section gives some qualitative idea

of what “relevant” means.

Table 4.2 shows the predicted neutrino flavor composition of the MiniBooNE

neutrino flux in neutrino running mode. The flux is dominated by muon neutrinos,

comprising 92.7% of the total neutrino flux, with a 6.6% flux contribution from muon

antineutrinos. Electron neutrinos comprise about 0.6% of the total neutrino flux.

Table 4.3 shows the most likely “neutrino history” for neutrinos reaching Mini-

BooNE, per neutrino flavor. The muon neutrino flux is mostly (86.1% ) due to the

decay of positive pions, which are produced directly by inelastic interactions of pri-

mary protons. The contribution of muon neutrinos from pions created by secondary
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Neutrino flavor Process Flux fraction

per flavor (% )

νµ p → π+ → νµ 86.1

p → p → π+ → νµ 7.3

p → K+ → νµ 2.8

p → n → π+ → νµ 1.9

Other 1.9

ν̄µ p → π− → ν̄µ 55.0

p → p → π− → ν̄µ 16.6

p → n → π− → ν̄µ 12.0

Other 16.4

νe p → π+ → µ+ → νe 47.6

p → K+ → νe 32.7

p → K0
L → νe 7.2

p → p → π+ → µ+ → νe 5.0

Other 7.5

ν̄e p → K0
L → ν̄e 65.5

p → π− → µ− → ν̄e 9.8

Other 24.7

Table 4.3: Most likely history for all neutrino types reaching the MiniBooNE detector, as

simulated by the beam Monte Carlo. The arrows indicate either an inelastic interaction, or

a decay.

protons and neutrons is also non-negligible, as is non-negligible the contribution of

muon neutrinos from charged kaon decays. Electron neutrino production is domi-

nated by the decays of muons produced by positive pions, which are in turn directly

produced in inelastic interactions of primary protons (48.0% of the total electron

neutrino flux). Contributions to the electron neutrino flux from charged and neutral

kaon decays, and from other muon decay chains, are also significant.
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Quantity Description Value

〈pπ+,in〉 Initial π+ momentum 2.17 GeV/c

〈ϑπ+,in〉 Initial π+ angle 106 mrad

〈lπ+,B〉 π+ path in horn field 82.1 cm

〈Bπ+〉 Horn field along π+ trajectory 0.71 Tesla

〈pπ+,fin〉 Final π+ momentum 2.08 GeV/c

〈ϑπ+,fin〉 Final π+ angle 30 mrad

〈Eν〉 Neutrino energy 0.762 GeV

Table 4.4: Average properties for p → π+ → νµ processes yielding muon neutrinos at

MiniBooNE, as simulated by the beam Monte Carlo. The properties listed illustrate pion

production, focusing, and decay kinematics characteristics.

The remaining two tables in this section focus on muon neutrinos, and in partic-

ular on the p → π+ → νµ events that mainly contribute to the total muon neutrino

flux. Table 4.4 lists average properties concerning pion production, focusing, and pion

decay kinematics. Pions yielding muon neutrinos at MiniBooNE are produced in the

beryllium target with an average momentum and angle of ∼ 2.2 GeV/c and ∼ 100

mrad, respectively. Pions lose a small fraction of energy crossing various materials,

and are focused by a ∼ 1 Tesla horn magnetic field over distances of the order of

∼ 1 meter, as well as by the collimator system, resulting in average pion angles at

decay of about 30 mrad. Neutrinos reaching the MiniBooNE detector are produced

forward in the pion center-of-mass frame, resulting in typical neutrino energies that

are a little less than the maximum neutrino energy of Eν = (m2
π −m2

µ)Eπ/m2
π, where

mπ and mµ are the π+ and µ+ masses, respectively, and Eπ is the total π+ energy at

decay.

Table 4.5 shows other properties for p → π+ → νµ events yielding muon neu-

trinos at MiniBooNE, related to beamline geometry, energy loss, and pion decay

characteristics. Primary protons travel about 22 cm on average in the Be target be-
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Particle Material 〈∆E〉 (MeV) 〈l〉 (cm)

p beryllium 56.3 22.3

π+ aluminum 22.3 5.9

π+ beryllium 21.5 8.5

π+ iron 11.3 1.1

π+ concrete 6.5 2.9

π+ air 2.9 1900

Table 4.5: Average properties for p → π+ → νµ processes yielding muon neutrinos at

MiniBooNE, as simulated by the beam Monte Carlo. The properties listed illustrate beam-

line geometry, energy loss, and pion decay characteristics, and are classified per beamline

material. In the Table, 〈E〉 is the average particle energy loss, and 〈l〉 is the average particle

pathlength in the material.

fore producing positive pions. The pions that are produced by protons can interact

via several physics processes (see Sections 4.4, 4.5) while crossing a few centimeters

of beryllium and aluminum, before decaying into neutrinos after typical pathlengths

of 20 m in air.

In the following Sections 4.4, 4.5, 4.6, we quantify the agreement between the

physics inputs to the beam Monte Carlo simulation, with expectations drawn from

experimental data points, data-driven parametrizations, and theoretical predictions.

Each physics input is tested individually, by disabling all other physics processes in

the simulation.
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4.4 Hadronic Interactions

4.4.1 Inelastic Interactions of Primary Protons in the Mini-

BooNE Target

An accurate simulation of inelastic interactions of primary protons in the MiniBooNE

target material is essential for obtaining accurate neutrino flux predictions. For this

reason, a custom-defined description of both the total proton-beryllium inelastic cross-

section, and of the final state for these inelastic interactions, is used at MiniBooNE.

The proton-beryllium total inelastic cross-section assumed in the simulation for

8.9 GeV/c Booster protons is σinel =189.3 mb, as obtained from an interpolation

of the cross-sections measured in the BNL E910 experiment at 6.4 and 12.3 GeV/c

proton beam momenta [82]. This value corresponds to an inelastic interaction length

for protons in beryllium of λinel =42.3 cm. The impact of varying this cross-section

value within its measured uncertainty is taken into account in the estimate of the flux

systematic uncertainty.

Concerning the final state in inelastic proton-beryllium interactions, the seven

types of secondaries of most direct relevance for neutrino fluxes are simulated: π+, π−,

K+, K−, K0
L, protons and neutrons. For each inelastic interaction, the multiplicities

and kinematic distributions for the first three particle types are drawn from three

parametrizations of double-differential, inclusive production cross-sections described

next, while production cross-sections obtained from MARS15 [83, 84] simulations are

assumed for the latter four particle types 2.

2Strictly speaking, neutral kaon production information is not available from MARS15, at

this time. Therefore, neutral kaon production is simulated according to the MARS15 posi-

tive kaon production, times the neutral-to-positive kaon production from the GFLUKA model,

via d2N(K0
L)/dpzdpt = (d2N(K+)/dpzdpt)MARS · [(d2N(K0

L)/dpzdpt)/(d2N(K+)/dpzdpt)]GFLUKA,

where pz, pt are the kaon logitudinal and transverse momentum components, and GFLUKA refers

to the FLUKA hadron production model [85] used by the GEANT3.21 simulation program [86].
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Secondary Sanford-Wang parameter

Particle c1 c2 c3 c4 c5 c6 c7 c8 c9

π+ 206.4 1.030 5.902 2.012 2.127 5.510 0.9958E-01 12.03 1.000

π− 184.1 1.052 6.706 1.275 1.424 5.225 0.9439E-01 10.74 1.000

K+ 12.53 1.654 0.314 1.038 0.174 4.658 0.106 10.53 2.635

Table 4.6: Values for the Sanford-Wang π± and K+ production parameters used in the beam

Monte Carlo simulation to describe meson production in proton-beryllium interactions [82].

The double-differential, inclusive production cross-sections for the secondaries

S = π+, π−, K+ are described according to “Sanford-Wang” parametrizations [87]:

d2σ(p + Be → S + X)

dpdΩ
=

= c1p
c2(1− p

pbeam − c9

) exp[−c3
pc4

pc5
beam

− c6ϑ(p− c7pbeam cosc8 ϑ)] (4.2)

where X means any other particle in the final state, pbeam is the proton beam mo-

mentum in GeV/c, p and θ are the secondary momentum and angle in units of GeV/c

and radians, respectively, d2σ/(dpdΩ) is expressed in units of mb/(GeV/c sr), and the

parameters c1, . . . , c9 are empirical parameters obtained from fits to meson production

data. The parameter c9, related to the momentum threshold for meson production,

is not fit in the case of pions, but set to 1 GeV/c. The value of these parameters as-

sumed by the beam Monte Carlo simulation are given in Tab. 4.6. Concerning muon

(anti)neutrino fluxes, the simulation of π+ production is particularly important in

the current MiniBooNE neutrino running mode, while a correct π− production simu-

lation would be essential for a possible future MiniBooNE antineutrino run. On the

other hand, the knowledge of K+ production affects the estimate for the amount of

intrinsic electron neutrinos in the beam from K+ decays.

The Sanford-Wang parameters given in Tab. 4.6 are obtained from fits of meson

production data from a number of hadron production experiments, with proton beam

momenta similar to the Booster proton momentum, and sensitive to a phase space

for meson production of relevance to MiniBooNE. A summary of the data used in the
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Secondary Proton beam Secondary particle phase space Data Ref.

particle S momentum θS,min θS,max pS,min pS,max points

(GeV/c) (mrad) (mrad) (GeV/c) (GeV/c)

π+ 12.3 42 331 0.6 5.4 71 [82]

12.4 2 206 2.1 6.3 53 [87]

6.4 71 353 0.6 4.2 29 [82]

10.1 61 61 1.0 4.5 14 [88]

π− 12.3 42 331 0.6 5.4 70 [82]

12.4 2 206 2.1 6.3 32 [87]

6.4 71 353 0.6 4.2 28 [82]

K+ 19.2 13 70 6.0 16.0 41 [89]

12.3 0 175 0.5 1.0 9 [90]

9.5 62 62 3.0 6.5 5 [91]

Table 4.7: Summary of hadro-production data used to obtain the MiniBooNE, Sanford-

Wang parametrizations of the double-differential, meson production inclusive cross-sections.

MiniBooNE Sanford-Wang fits is given in Tab. 4.7.

While some data used in the MiniBooNE Sanford-Wang fits is available in the lit-

erature, the dominant contribution (in terms of statistical power) for π± production is

based on a new analysis of Brookhaven E910 data at 6.4 and 12.3 GeV/c proton beam

momenta on a thin beryllium target, done by collaborators from both experiments.

Figure 4.3 shows a comparison between E910 12.3 GeV/c data on π+ production,

and the parametrization assumed in the beam Monte Carlo simulation. In the near

future, meson production data from the CERN HARP experiment [92], obtained with

beryllium targets of various thicknesses and at the Booster beam momentum, will also

be used as inputs to the beam Monte Carlo simulation. The uncertainties in meson

production data obtained from the Sanford-Wang fits are propagated into neutrino

flux systematic uncertainties.

Given the assumptions described above, the particle multiplicities per inelastic

interaction for all simulated secondaries are given in Tab. 4.8. The average multi-
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Figure 4.3: The double-differential π+ production cross-section in proton-beryllium inter-

actions, as a function of pion production momentum pπ and angle θπ. The six panels

correspond to: θπ (mrad) = 42 (a), 95 (b), 153 (c), 212 (d), 272 (e), 331 (f). The points

correspond to BNL E910 data at pbeam = 12.3 GeV/c [82]; the dashed lines correspond to

the beam Monte Carlo π+ production assumption, specified by Eq. 4.2 and Tab. 4.6, for

the same 12.3 GeV/c beam momentum.

Secondary particle type π+ π− K+ K− K0
L p n

Average multiplicity 0.799 0.596 0.048 0.003 0.030 1.544 1.341

Table 4.8: Average multiplicity per inelastic collision for secondary particles produced in

inelastic collisions of 8.9 GeV/c protons in the MiniBooNE beryllium target.

plicities per inelastic collision are defined as the integral of the double-differential,

inclusive production cross-section over the entire secondaries phase space, divided by

the total proton-beryllium inelastic cross-section. Proton and neutron production are

the most abundant, followed by π+ production.

Figure 4.4 shows the one-dimensional projections along the longitudinal and

transverse momentum components at production of the secondaries simulated in the
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Figure 4.4: One-dimensional projections along the longitudinal (top) and transverse (bot-

tom) momentum components pz and pt of the expected double-differential production cross-

sections for secondaries produced by 8.9 GeV/c protons interacting in beryllium. All his-

tograms are normalized to unit area. Panels a) and d) refer to baryon production: solid

histograms for protons, dashed for neutrons; b) and e) to non-strange meson production:

solid histograms for π+, dashed for π−; c) and f) to strange meson production: solid his-

tograms for K0
L, dashed for K+, dotted for K−.

interactions of 8.9 GeV/c protons in beryllium, normalized per unit area. We note

here the leading particle effect in the proton and neutron distributions, with momenta

extending up to incident proton momentum, and that the pion kinematic distributions

at production are peaked at considerably lower momenta compared to the typical mo-

menta for pions yielding neutrinos directed toward the MiniBooNE detector (see Tab.

4.4).
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4.4.2 Other Inelastic Interactions

Secondary interactions of pions and protons also play a non-negligible role in deter-

mining the MiniBooNE neutrino flux. These particles, once they have been produced

in a primary inelastic interaction, can still traverse significant amounts of target and

horn material (relative to the inelastic interaction length, see Tab. 4.5), and in turn

interact inelastically. Therefore, we describe here the simulation of inelastic interac-

tions of secondary pions and protons of various momenta in beryllium and aluminum.

These inelastic processes, with the exception of Kp > 7.5 GeV protons in beryl-

lium discussed in Section 4.4.1, are described by built-in GEANT4 physics models.

The final state description model typically used in the simulations is part of the “Low

Energy Parametrization Driven Model”, based on the GEANT3.21 GHEISHA pack-

age [81]. For the purposes of estimating flux systematic uncertainties, alternative

built-in physics models have also been explored, namely the “Bertini Intranuclear

cascade model”, and the “Binary Cascade Model” [81].

Figure 4.5 shows average properties of inelastic interactions of secondary π+’s

and protons in beryllium and aluminum, as a function of the projectile momentum.

The average properties shown are the inelastic interaction length λinel, the average

number 〈Nπ〉 of π+’s in the inelastic interaction final state, the average momentum

〈pπ〉 for final state π+’s, and the average angle 〈θπ〉 between the incoming projectile

and the outgoing final state π+’s.

Experimental data are available on the total inelastic length, and are shown for

comparison in Fig. 4.5. The inelastic interaction lengths for π+’s and protons are

similar, of the order of 40-50 cm. The inelastic cross-sections show a mild momentum

dependence over the range 1 < p (GeV/c) < 10.

Pions in the final state tend to be more numerous for higher energy projectiles,

for π+ projectiles than for p projectiles, and show little dependence on the target

material. The average π+ momenta tend to be much smaller than the projectile

momenta, and π+ emission angles are large.
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Figure 4.5: Inelastic processes for π+’s and protons interacting in beryllium and aluminum,

as a function of the projectile momentum p. From left to right: inelastic π+-Be, π+-Al, p-

Be, and p-Al processes. From top to bottom: inelastic interaction length λinel, and average

number per inelastic collision 〈Nπ〉, momentum 〈pπ〉 and angle with respect to the projectile

direction 〈ϑπ〉, of final state π+’s. The curves show the beam Monte Carlo assumptions,

the points show experimental data: • from Ref. [93], ◦ from [94], � from [82], ∗ from [95].

Moreover, the values within dashed lines in the p-Be panels show the assumptions adopted

for primary protons, described in Section 4.4.1.
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Figure 4.6: Elastic processes for π+’s and protons interacting in beryllium and aluminum,

as a function of projectile momentum p. From left to right: elastic π+-Be, π+-Al, p-Be, and

p-Al processes. From top to bottom: elastic interaction length λel, and average projectile

deflection angle 〈ϑ〉. The arrows in the top plots indicate the high-energy values from [60].

4.4.3 Elastic Interactions

Apart from scattering inelastically, pions and protons can also interact elastically in

the target hall and decay region materials. Unlike the inelastic processes described

above, no particle absorption, particle production, or charge exchange are present in

this case, and the only effect is an angular deflection of the projectile with respect to

its original direction. In Figure 4.6, the elastic interaction length λel and the average

elastic scattering deflection angle assumed by the beam Monte Carlo simulation are

shown as a function of projectile momentum.

The elastic interaction length is smaller in aluminum than in beryllium, and

similar for protons or pions; moreover, the elastic interaction length tends to increase

with projectile momentum, in the 1 < p (GeV/c) < 10 momentum range. Over

this range, typical values in beryllium are 110-205 cm, and 45-115 cm in aluminum.

significantly larger than the corresponding inelastic interaction lengths. From the
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data in Ref. [60], and assuming that the total nuclear collision cross-section is given

by the sum of the total elastic and inelastic cross-section, the elastic interaction length

for > 60 GeV/c protons can be extracted. The elastic interaction length values from

[60] are 117.0 and 77.7 cm in beryllium and aluminum, respectively, which are also

shown in Fig. 4.6.

The mean deflection angles are much smaller in elastic collisions than in the

previously discussed inelastic collisions. The angles tend to be larger, on average, for

low-energy projectiles, and are very similar for protons and pions. Typical deflection

angles in one elastic collision are 10-150 mrad, and are therefore significant.

4.5 Electromagnetic Processes

4.5.1 Particle Trajectories in the MiniBooNE Horn Magnetic

Field

The horn magnetic field provides a large increase in flux: the neutrino rate at Mini-

BooNE per proton on target has been measured to be about six times larger in horn-on

running mode, compared to horn-off running mode (see Chapter 3). Therefore, it is

necessary to accurately simulate the motion of charged particles in the field, in order

to obtain reliable flux predictions.

The transportation algorithms through a non-uniform magnetic field region used

by the beam Monte Carlo simulation have been validated via an independent track-

ing algorithm. The simple test case considered here is that of a magnetic field region

that is similar to the MiniBooNE horn one, with an azimuthal field of magnitude

B = µ0I/(2πr), where µ0 = 4π · 10−7 N/A2 is the permittivity of free space, I =170

kA and r =
√

x2 + y2, in the region 2.2 cm < r < 30 cm, 0 < z < 180 cm, and zero

magnetic field otherwise. Positive pions of various momenta, produced at (x = 0, y =

0, z = 30 cm) and with an initial momentum direction of px/pz = 1/8, py = 0, are
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Figure 4.7: Trajectories in the horn magnetic field for 0.5, 1.5, 2.5, 3.5, and 4.5 GeV

kinetic energy π+’s, with initial conditions: (x0 = 0, z0 = 30 cm, px,0/pz,0 = 1/8). The

points are from a beam Monte Carlo simulation, the dashed curves from the solution of Eq.

4.3 discussed in the text.

tracked through this simple geometry. The particle trajectories are described by the

following system of two coupled, second-order differential equations:
ẍ(t) = cB

x(t)
ż(t), ẋ(0) = v0 sin θ, x(0) = x0

z̈(t) = − cB

x(t)
ẋ(t), ż(0) = v0 cos θ, z(0) = z0

(4.3)

where, in SI units:

cB =
µ0I

2π
· q

mπγ
(4.4)

where µ0 and I are defined above, q is the (positive) electron charge, mπ is the π+

mass, γ is the relativistic γ factor for the pion, v0 = c
√

γ2 − 1/γ, and θ = arctan(1/8)

in this case.

The particle trajectories as calculated by the beam Monte Carlo simulation, and

by an independent tracking algorithm based on a Runge-Kutta-Nystrom numerical

integration [96] of Eq. 4.3, are shown to be consistent with each other in Fig.4.7, for
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Figure 4.8: Multiple Coulomb scattering results obtained from a simulation of 10 cm of

material, as a function of projectile momentum p. From left to right: multiple Coulomb

scattering of π+ in Be, π+ in Al, p in Be, p in Al. The average projectile deflection angle,

〈θ〉, is shown. The dashed curves, almost indistinguishable from the beam Monte Carlo solid

curves, show the predictions from Eqs. 4.5 and 4.6 in the text.

pions of various momenta.

4.5.2 Multiple Coulomb Scattering

Any charged particle traversing a material undergoes many small electromagnetic

scatters that can be described cumulatively, at a macroscopic level. The beam Monte

Carlo simulation uses the Lewis formalism to simulate multiple Coulomb scattering.

The multiple Coulomb scattering angle distributions for pions and protons, simu-

lated by the beam Monte Carlo program through 10 cm of beryllium and aluminum

materials, are shown in Fig.4.8 as a function of projectile momenta. This material

thickness is chosen in this example because it is comparable to the materials traversed

by protons and pions yielding muon neutrinos at MiniBooNE (see Tab. 4.4).

Multiple Coulomb scattering is more important for low-momentum than for

high-momentum projectiles, for aluminum than beryllium, and is similar for protons

and pions. Typical scattering angles over 10 cm of material traversed are between 1

and 20 mrad.

The beam Monte Carlo results can be confronted with the Highland formula from
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Ref. [60], describing the average multiple Coulomb scattering angle 〈θ〉:

〈θ〉H =

√
π

2
σθ (4.5)

where:

σθ =
13.6 MeV

βcp

√
z/X0[1 + 0.038 ln(z/X0)] (4.6)

In Eq.4.6, βc is the projectile velocity, p its momentum, z ' 10 cm is the material

traversed, X0 is the material radiation length, equal to 35.28 cm for beryllium and

8.90 cm for aluminum [60]. The dashed curves in Fig. 4.8 show the average deflection

angle due to multiple Coulomb scattering as predicted by the Highland formula of

Eqs. 4.5 and 4.6, and good agreement with the beam Monte Carlo simulations is

obtained.

4.5.3 Ionization by Charged Hadrons

The last electromagnetic process discussed here is energy loss by charged hadrons. In

the beam Monte Carlo simulation, this process simulates both the continuous energy

loss due to ionization and atomic excitation via the Bethe-Bloch formula, as well as

the “discrete” part of the ionization via δ-ray emission. As for multiple Coulomb

scattering processes, the macroscopic effects due to energy loss are quantified for

particles crossing z =10 cm of beryllium and aluminum materials. The results from

beam Monte Carlo simulations are shown in Fig. 4.9. In Figure 4.9, we define ∆ as

the projectile energy loss across the material thickness:

∆ ≡ −
∫ 10 cm

0

dE

dz
dz (4.7)

The energy loss results in Fig. 4.9 can be compared with the Bethe-Bloch formula

given in [60], for π+ or p projectiles in beryllium (aluminum):

− dE

dx
= ρKz2Z

A

1

β2
[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2
] (4.8)
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Figure 4.9: Energy loss results obtained from a simulation of 10 cm of material, as a

function of projectile momentum p. From left to right: energy loss of π+ in Be, π+ in Al, p

in Be, p in Al. From top to bottom: average energy loss per unit material traversed, ∆/z;

average projectile deflection angle, 〈θ〉. The dashed curves, almost indistinguishable from

the beam Monte Carlo solid curves, show the predictions from Eqs. 4.8 and 4.9 in the text.

where K = 0.307075 MeV g−1 mol−1, z = 1 is the projectile electric charge in units

of e, Z = 4 (13) is the target electric charge in units of e, A = 9.01 (26.98) is the

target atomic weight in units of g/mol, β is the projectile’s velocity in units of c,

mec
2 = 0.511 MeV is the electron mass, γ = (1 − β2)−1/2, Tmax = 2mec

2β2γ2/(1 +

2γme/M + (me/M)2) is the maximum kinetic energy which can be imparted to a

free electron in a single collision, M = 139.57 or 938.27 MeV/c2 is the projectile’s

mass, I = 63.7 (166.0) eV is the mean excitation energy, and δ is the density effect

correction to ionization energy loss, given by:

δ =


2(ln 10)x− C̄ , if x ≥ x1;

2(ln 10)x− C̄ + a(x1 − x)k , if x0 ≤ x < x1;

δ0102(x−x0) , if x < x0

(4.9)



112

where x = log10(p/Mc), x0 =0.0592 (0.1708), x1 =1.6922 (3.0127), C̄ =2.7847

(4.2395), a =0.80392 (0.08024), k =2.4339 (3.6345), δ0=0.14 (0.12) [60]. The ex-

pected energy loss given by Eqs. 4.8 and 4.9 is consistent with the beam Monte Carlo

assumptions.

Figure 4.9 also shows the mean projectile deflection angles after traversing z =10

cm of material. These angles are very small, of the order of 1 mrad, and negligi-

ble with respect to the deflection angles due to nuclear elastic scattering or multiple

Coulomb scattering.

4.6 Neutrinos from Meson and Muon Decays

Neutrinos reaching the MiniBooNE detector are produced via the decays of charged

pions, kaons, and muons. Particle lifetimes, decay branching ratios, Lorentz boosts,

and center-of-mass kinematics of the neutrinos produced in the decays affect the

neutrino flux predictions, and are discussed here.

The neutrino parent lifetimes and branching ratios used in the simulation are

given in Tab. 4.9, for π+, K+, K0
L, and µ+ neutrino parents, and the corresponding

decays of negatively-charged particles are also simulated. Given the relevance of

decays yielding electron neutrinos for the MiniBooNE νµ → νe search, the GEANT4

built-in decay channels and branching ratios have been updated with the values in

Tab. 4.9 to yield more accurate electron neutrino predictions [97].

The effect of Lorentz boosts is shown in Fig. 4.10. Figure 4.10a shows the decay

length λdecay as a function of neutrino parent momentum p. The data points from

beam Monte Carlo simulations match well the γβcτ expectations, where the lifetime

τ for a neutrino parent type is the one given in Tab. 4.9, and γβ = p/m, where

m is the neutrino parent mass. Also, Lorentz boosts are applied in the simulation

to determine the neutrino kinematics in the laboratory frame, once the neutrino

kinematics are generated in the parent rest frame. In Figure 4.10b, we show the
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Particle Lifetime Decay mode Branching ratio

(ns) (%)

π+ 26.03 µ+νµ 99.9877

e+νe 0.0123

K+ 12.37 µ+νµ 63.17

π+π0 21.2

π+π+π− 5.6

π0e+νe 5.13

π0µ+νµ 3.2

π+π0π0 1.7

K0
L 51.70 π0π0π0 19.45

π−e+νe 20.4

π+e−ν̄e 20.27

π−µ+νµ 13.55

π+µ−ν̄µ 13.46

π0π+π− 12.87

µ+ 2197.03 e+νeν̄µ 100.0

Table 4.9: Particle lifetimes, decay modes and branching ratios used in the beam Monte

Carlo simulation.

neutrino energy as a function of the neutrino parent momentum p in the laboratory

frame, for π+ → µ+νµ decays and for neutrinos crossing a disk of radius Rdet =6.1

m and located L =541 m from the pion production location, that is for the neutrino

phase space of relevance to MiniBooNE. The dashed curves in Fig. 4.10b correspond

to the maximum and minimum neutrino energies, given by: Eν,max = γECM
ν (1 + β)

Eν,min = γECM
ν (1 + β cos θCM

max)
(4.10)

where ECM
ν = (m2

π −m2
µ)/(2mπ) is the neutrino energy in the pion rest frame, γ =√

1 + (p/mπ)2, β =
√

γ2 − 1/γ, θCM
max = 2 arctan(γ tan θmax) and θmax = arctan(Rdet/L)
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Figure 4.10: Validation of decay routines in the beam Monte Carlo simulation. Fig. 4.10a

shows the decay length λdecay as a function of the parent momentum p, for (from bottom

to top) K+, π+, K0
L, µ+ parents. Fig. 4.10b) shows the average neutrino energy in π+ →

νµ → µ+ decays as a function of pion momentum p, for neutrinos crossing the MiniBooNE

detector. The points are the results from beam Monte Carlo simulations, the dashed curves

are the minimum and maximum neutrino energies discussed in the text.

are the angles between the pion direction and the neutrino directions in the pion rest

frame and in the laboratory frame, respectively. From Fig. 4.10b, one finds that the

average neutrino energy predicted by the beam Monte Carlo simulation lies approx-

imately in between the minimum and maximum energies from Eq. 4.10. This is the

expected result for the average neutrino energy, given the isotropic neutrino angular

distribution in the pion rest frame: in this case, dN/d cos θCM = const in the pion

rest frame implies dN/dEν = const in the laboratory frame, for fixed pion momenta.

Finally, we discuss the kinematics of neutrino decays in the rest frame of the

neutrino parents, for the most relevant decays yielding muon and electron neutrinos,

separately.
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Figure 4.11: Muon neutrino kinematic distributions in the neutrino parent rest frame. The

top row shows the neutrino energy distribution, the bottom row shows the neutrino angular

distribution with respect to the z-direction in the laboratory frame. The left column refers

to π+ decays, the right column to K+ decays. The histograms are the results of beam Monte

Carlo simulations, the dashed curves are the expectations discussed in the text.

4.6.1 Decays into Muon Neutrinos

Muon neutrinos reaching MiniBooNE are mostly produced by π+ decays, with a non-

negligible contribution from K+ decays (see Tab. 4.3). The histograms in Fig. 4.11

show the muon neutrino energy and angular distributions in π+ and K+ decays at

rest. The angular distributions are flat, while the neutrino energy from the π+/K+ →

µ+νµ two-body decays is (m2
π/K − m2

µ)/(2mπ/K). For kaon decays, a small fraction

(' 5%) of muon neutrinos are simulated with a continuous energy distribution from

K+ → π0µ+νµ three-body decays (see Tab. 4.9).

4.6.2 Decays into Electron Neutrinos

Muon decays and leptonic decays of kaons (both charged and neutral) are predicted

to yield almost the entire electron neutrino flux at MiniBooNE (see Tab. 4.3). The
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Figure 4.12: Electron neutrino kinematic distributions in the neutrino parent rest frame.

The left column refers to µ+ decays, the middle column to K+ decays, and the right column

to K0
L decays. The top row shows the neutrino energy distribution, the bottom row shows

the neutrino angular distribution with respect to the z-direction in the lab frame, defined as

the beam direction. The three curves for muons correspond to the cases: Pz = −1, 0,+1,

where Pz is the projection along z of the muon polarization vector in the muon rest frame.

The histograms are the results of beam Monte Carlo simulations, the dashed curves are the

expectations discussed in the text.

neutrino energy and angular distribution from µ+ decays is, neglecting terms propor-

tional to the electron mass [98]:

dN

dxd cos θν

∝ 12x2

4π
(1− x)(1∓ Pz cos θ) (4.11)

where cos θν is the neutrino emission angle with respect to the beam direction z, Pz

is the projection along z of the muon polarization vector in the muon rest frame, and

x = 2Eν/mµ, with 0 < x < 1. In π+ → µ+ → νe decays, the muon polarization in

the muon rest frame is calculated from the known muon polarization in the pion rest

frame, and boosting the polarization vector into the muon rest frame.

For the kaon three-body decays yielding electron neutrinos (that is, K → πeνe, or

Ke3 decays), the neutrino angular distribution, in the kaon rest frame and with respect
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to the beam direction, is flat. Assuming that only the vector current contributes to

the kaon semileptonic decay matrix element, and neglecting electron mass terms, the

neutrino energy distribution in the kaon rest frame is [99]:

dN

dEν

∝
∫ Ee,+

Ee,−

dEe(2EeEν −mkE
′
π)|f+(t)|2 (4.12)

where all quantities refer to the kaon rest frame, Ee is the electron energy, E ′
π ≡

Emax
π −Eπ, Emax

π = (m2
K +m2

π)/(2mK) is the maximum energy that can be transferred

to the pion, Eπ is the pion energy, f+ is a form factor depending only on the square

of the four-momentum transfer to the leptons, t = (pk − pπ)2 = m2
k + m2

π − 2mkEπ,

and Ee,± are integration limits on the electron energy: Ee,− =
m2

K−m2
π

2mk
− Eν

Ee,+ = 1
2
(mk − m2

π

mk−2Eν
)

(4.13)

The beam Monte Carlo simulation also assumes, as customarily done, a linear depen-

dence of the form factor f+ on t:

f+(t) ∝ (1 + λ+t/m2
π) (4.14)

For K+
e3 (K0

e3) decays, the coefficient λ+ for the linear expansion of the form factor

is 0.0277 (0.0291) [60].

The expected kinematics for electron neutrinos in muon decays and semileptonic

kaon decays described above are shown with dashed lines in Fig. 4.12, and agree well

with the beam Monte Carlo results.

4.7 Neutrino Flux Predictions at the MiniBooNE

Detector

In this section we present the results of the beam Monte Carlo simulations, that is

the neutrino flux predictions at the MiniBooNE detector location, as a function of
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Neutrino Flavor Neutrino Parent φ (cm−2pot−1) 〈Eν〉 (GeV)

all all 5.22 · 10−10 0.760

νµ all 4.84 · 10−10 0.778

νµ π+ 4.69 · 10−10 0.734

νµ K+ 1.42 · 10−11 2.250

ν̄µ all 3.47 · 10−11 0.488

ν̄µ π− 3.24 · 10−11 0.470

νe all 3.07 · 10−12 0.939

νe µ+ 1.70 · 10−12 0.665

νe K+ 1.07 · 10−12 1.321

ν̄e all 3.44 · 10−13 0.888

ν̄e K0
L 2.55 · 10−13 1.032

Table 4.10: Summary of neutrino flux predictions at MiniBooNE, for neutrino running

mode. The fluxes φ, as well as the neutrino energy 〈Eν〉 averaged over the flux distribution,

are given. The most important contributions from the various neutrino flavors and neutrino

parent types are shown.

neutrino energy and for all relevant neutrino flavors.

Table 4.10 shows a summary on neutrino flux predictions, given in terms of

total flux and mean neutrino energy averaged over the flux distributions, for the

various neutrino flavors and for the most important neutrino parent types. The

overall neutrino flux prediction is 5.22 · 10−10 cm−2pot−1, with a mean neutrino en-

ergy of 0.76 GeV. The flux prediction is 4.84 · 10−10 cm−2pot−1 for muon neutrinos,

3.47 · 10−11 cm−2pot−1 for muon antineutrinos, 3.07 · 10−12 cm−2pot−1 for electron

neutrinos, 3.44 · 10−13 cm−2pot−1 for electron antineutrinos, yielding a 0.6% νe/νµ

flux ratio, and a 0.7% (νe + ν̄e)/(νµ + ν̄µ) flux ratio.

Figure 4.13 shows the neutrino energy distributions for muon neutrinos, muon

antineutrinos, and electron neutrinos. Figure 4.14 shows the muon neutrino energy
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Figure 4.13: Predicted neutrino flux as a function of neutrino energy, for all neutrinos

reaching MiniBooNE, in neutrino running mode. The thick solid histogram is for all neu-

trinos, the thin solid histogram for νe, the dashed histogram for ν̄µ, the dotted histogram for

νµ. The fluxes are shown on a logarithmic scale on the left, and on a linear scale on the

right.

distribution, together with the partial contributions from π+ and K+ decays. Fig-

ure 4.15 shows the electron neutrino energy distribution, together with the partial

contributions from µ+, K+, and K0
L decays.
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Figure 4.14: Predicted muon neutrino flux as a function of neutrino energy, for all muon

neutrinos reaching MiniBooNE, in neutrino running mode. The solid histogram is for all

muon neutrinos, the dashed histogram for muon neutrinos from K+ decay, the dotted his-

togram for muon neutrinos from π+ decay. The fluxes are shown on a logarithmic scale on

the left, and on a linear scale on the right.
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Figure 4.15: Predicted electron neutrino flux as a function of neutrino energy, for all elec-

tron neutrinos reaching MiniBooNE, in neutrino running mode. The thick solid histogram

is for all electron neutrinos, the thin solid histogram for electron neutrinos from µ+ decay,

the dashed histogram for electron neutrinos from K0
L decay, the dotted histogram for electron

neutrinos from K+ decay. The fluxes are shown on a logarithmic scale on the left, and on

a linear scale on the right.



Chapter 5

Overview of Neutrino Interactions

in the 1 GeV Energy Regime

We review here the current theoretical and experimental understanding of low-energy

neutrino interactions. The description and the predictions of the NUANCE event

generator code [100], used in MiniBooNE to implement all neutrino cross-sections, is

given as well. The νµ charged-current, quasi-elastic (CCQE) interaction is the only

process described in detail, since it is the focus of the MiniBooNE analysis presented

in Chapters 7 and 8. Moreover, the discussion will be restricted to νµ interactions

only, since they are estimated to account for 97.5% of all neutrino interactions in the

MiniBooNE detector when the neutrino beamline is operated in neutrino mode.

As discussed in Chapter 4, MiniBooNE detects beam-induced neutrino inter-

actions mostly in the 0.3 < Eν(GeV) < 1.5 energy range. At these energies, the

dominant process responsible for neutrino interactions is quasi-elastic scattering. On

the other hand, the center-of-mass energy in the collision is high enough to have a

non-negligible contribution to the total cross-section from production of hadronic res-

onances from neutrino-nucleus interactions, and to a lesser degree from deep inelastic

scattering (DIS) of neutrinos with the quark constituents of nucleons. Unlike quasi-

elastic scattering, the final states for the latter two neutrino interaction processes

122



123

Figure 5.1: Charged-current neutrino cross-section per nucleon divided by neutrino energy,

σCC/Eν , over a wide range of neutrino energies (0.1 < Eν(GeV) < 300). The predicted

relative contributions from the CCQE (red curve), CC resonant single π production (green),

and from CC DIS (black) are also shown, together with the total CC cross-section expectation

(blue curve) and existing cross-section measurements. The calculations are from [101],

while the experimental data are from [102] (solid circles), [103] (empty circles), [104] (solid

squares), and [105] (empty squares).

typically include pions, in addition to baryons and leptons.

The individual process contributions to the charged-current part of the total

neutrino cross-section are shown in Fig. 5.1, as a function of neutrino energy and

divided by neutrino energy. While the quasi-elastic and resonant π production (typ-

ically from ∆ → Nπ) cross-sections reach an asymptotic value at high energies, the

DIS cross-section grows linearly with neutrino energy.



124

5.1 The NUANCE Cross-Section Generator

In order to obtain reliable cross-section and oscillation measurements at MiniBooNE,

a realistic simulation of all relevant neutrino interaction processes is necessary. In

MiniBooNE, neutrino cross-sections are simulated via the NUANCE code [100].

NUANCE is a general-purpose neutrino cross-section simulator, modeling virtu-

ally all relevant neutrino interaction processes (with varying degrees of sophistication)

in the 10−1 < Eν (GeV) < 103 neutrino energy range. NUANCE is an open source

code 1, originally developed for simulating atmospheric neutrino interactions in the

IMB detector. The code has later been greatly generalized, and it is currently used by

several neutrino experiments other than MiniBooNE, including Super-Kamiokande,

K2K, SNO, and KamLAND. The total neutrino cross-section is computed by summing

the contributions from all the simulated exclusive channels: quasi-elastic scattering,

neutrino-induced production and decay of baryonic resonances, neutrino-nucleus co-

herent scattering, and neutrino-electron scattering. The inclusive cross-section con-

tribution from deep inelastic scattering is added to the total cross-section only over a

subset of the available hadronic final state phase space (invariant mass of the hadronic

system W greater than 2 GeV), in order to avoid double-counting of resonant con-

tributions. For all processes, both charged-current and neutral-current reactions are

simulated. Overall, NUANCE simulates 99 different neutrino interactions, taking also

into account the complications arising from nuclear effects. The version of the code

that we describe below, v3.000, reflects what is used in this analysis.

Charged-current, quasi-elastic (CCQE) scattering νµn → µ−p is treated ac-

cording to the Llewellyn Smith formalism [108], which is described in detail be-

low. The cross-section for neutral-current, quasi-elastic scattering νµN → νµN is

related to the CCQE scattering cross-section, since in electroweak theory the form

factors parametrizing the neutral-current process can be fully specified in terms of

1At the time of writing, the code is available at: http://nuint.ps.uci.edu/nuance/.
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the charged-current form factors [109].

The production of baryonic resonances, and their subsequent decay into hadronic

final states, is simulated in NUANCE according to the Rein and Sehgal model [110].

The amplitude of each hadronic final state due to a resonance decay, typically com-

posed of one nucleon and one pion, is given by the sum of several contributions arising

from various resonances in the 1.08 GeV < W (Nπ) ≡ (pN +pπ)2 < 2.0 GeV hadronic

invariant mass range. The production and decay of each resonance is fully specified

by its orbital angular momentum, isospin, and spin quantum numbers, plus the reso-

nance mass central value, width, and inelasticity. In the energy regime of interest to

MiniBooNE, the dominant ∆ resonance is L2i,2j (mass) = P3,3(1232), but the effect

of eighteen resonances (including interference effects among overlapping resonances)

is simulated by NUANCE 2. The matrix elements for the production and decay of the

resonances are computed using the relativistic quark model of Feynman, Kislinger

and Ravndal [111]. The FKR model views the nucleon as the ground state of a three

quark system tied together by harmonic forces, whose excitations correspond to bary-

onic resonances. The nucleon form factors for resonance production are similar to the

ones used in quasi-elastic scattering, which we also discuss below. The NUANCE de-

scription of neutrino-induced production of resonances include decays to final states

with multiple mesons, as well as final states where the ∆ resonance decays radiatively

(∆ → Nγ), an important background to the MiniBooNE νµ → νe search.

Coherent production of mesons in neutrino interactions are also simulated by NU-

ANCE. Coherent interactions refer to neutrinos interacting with the target nucleus

as a whole, with no charge or isospin transfer to the nucleus, no nucleus break-up

and very little nuclear recoil energy. Although these processes are responsible for

only a small fraction of the total neutrino interactions at MiniBooNE energies, they

are unique in that they typically produce a forward-going lepton and a forward-going

2NUANCE simulates the same resonances included in the original Rein and Sehgal computation,

but using a more recent mass spectrum for the resonances.
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pion in the final state. Pion production in coherent neutrino-nucleus interactions in

NUANCE follows the Rein and Sehgal calculation [112].

Deep inelastic scattering of neutrinos with parton constituents of the nucleons

is also taken into account, although its effect is negligible at MiniBooNE energies.

The code implements state-of-the-art parton distribution functions from the Bodek-

Yang duality-inspired model [113, 114]. Tree-level, neutrino-electron scattering is also

included in NUANCE, despite its negligible contribution to the total neutrino cross-

section in MiniBooNE.

At MiniBooNE, neutrinos interact with mineral oil, made of Carbon and Hydro-

gen nuclei. For neutrino reactions on the target nucleons bound in Carbon nuclei,

nuclear effects affecting the cross-sections for the individual processes, as well as the

final state composition and kinematics, are also simulated by NUANCE. Nuclear ef-

fects on charged-current, quasi-elastic neutrino interactions will be discussed below;

the same formalism and physics input applies to the other neutrino reactions on

bound nucleons simulated by NUANCE.

The MiniBooNE NUANCE cross-section generator allows for a quantitative esti-

mate of the various νµ cross-section contributions, given the MiniBooNE flux discussed

in Chapter 4 and for a CH2 nuclear target (a good approximation to mineral oil, as

far as neutrino cross-sections are concerned). The various process contributions are

shown in Tab. 5.1, split into charged-current (CC) and neutral-current (NC) pro-

cesses. Charged-current processes are responsible for about 71% of all νµ interactions

at MiniBooNE. The CCQE fraction is the dominant one, corresponding to about

40% of all νµ interactions at MiniBooNE, followed in importance by CC resonant π

production, representing 26% of the total. The fractions given in Tab. 5.1 do not

include final state interactions.

We now discuss in more detail the physics assumptions and the experimental val-

idation of the NUANCE CCQE cross-section prediction on free neutrons, and nuclear

effects.
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Interaction Type Fraction

(%)

Quasi-Elastic CC: νµn → µ−p 39.9

NC: νµN → νµN 16.3

CC/NC 56.2

Resonant single π CC: νµN → µ−Nπ 26.4

NC: νµN → νµNπ 9.3

CC/NC 35.7

Coherent single π CC: νµA → µ−π+A 2.5

NC: νµA → νµπ0A 1.5

CC/NC 4.0

Resonant multi π CC: νµN → µ−∆π, µ−N(ρ/η), µ−(Λ/Σ)K, µ−Nππ 2.0

NC:νµN → νµ∆π, νµN(ρ/η), νµ(Λ/Σ)K, νµNππ 0.8

CC/NC 2.8

DIS CC: νµN → µ−X 0.8

NC: νµN → νµX 0.3

CC/NC 1.1

∆ radiative decay CC: νµN → µ−Nγ <0.1

NC: νµN → νµNγ 0.1

CC/NC 0.1

Table 5.1: Event rate fractions for νµ interactions on CH2, assuming the MiniBooNE

neutrino flux and neglecting final state interactions. The fractions are split into process

types, as well as in charged-current (CC) and neutral-current (NC) processes.

5.2 The Free Nucleon Quasi-Elastic Interaction

The charged-current, quasi-elastic (CCQE) neutrino interaction converts the neutrino

into the associated charged lepton via the exchange a virtual massive boson W with

the target nucleon. For an incoming muon neutrino, the associated charged lepton is

a µ−:

νµ(p1, σ1) + n(p2, σ2) → µ−(p3, σ3) + p(p4, σ4) (5.1)
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In Eq.5.1, the labels p and σ denote the energy/momentum of the incoming an out-

going particles, and σ the spin states.

Neglecting the neutrino mass and taking mn ' mp ≡ mN , the differential CCQE

cross-section can be expressed in the lab frame as:

dσ

dQ2
=

〈|M |2〉
64π(~c)4m2

NE2
ν

(5.2)

where Q2 ≡ −q2, q ≡ p1 − p3 is the four-momentum carried by the W , 〈|M |2〉 is the

matrix element squared for the CCQE process, averaged/summed over initial/final

spin states (since the particle’s polarization is generally not measured), and Eν is the

neutrino energy in the lab frame.

For Q2 � m2
W , the matrix element can be expressed in terms of the Fermi

constant GF , and the weak currents associated with the lepton (jµ
l ) and hadronic

(jµ
h ) vertices:

M =
GF√

2
jµ
l jν

hgµν (5.3)

Empirically, the lepton current is shown to have the pure (V-A), parity-violating,

form:

jµ
l = ū3γ

µ(1− γ5)u1 (5.4)

where the u’s are Dirac spinors. The hadronic weak current is more complicated, due

to the nucleon structure which is parametrized via form factors. The most general

form factor decomposition of the weak hadronic current takes the following form,

which includes both a vector (V) and an axial (A) parts [106]:

jµ
h = jµ

h,V − jµ
h,A (5.5)

jµ
h,V = Vudū4[f1(q

2)γµ + i
f2(q

2)

2mN

σµνqν + f3(q
2)qµ]u2

jµ
h,A = Vudū4[g1(q

2)γµγ5 + i
g2(q

2)

2mN

σµνγ5qν + g3(q
2)γ5qµ]u2

where Vud is the CKM matrix element associated with the vertex (dWu), and the six

functions f and g are weak form factors. Equation 5.5 represents the most general

form factor decomposition of the weak hadronic current since it requires only Lorentz
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invariance, but not gauge invariance (i.e. current conservation). Lorentz invariance

ensures that the form factors can depend only on q2 (or alternatively on l2, where

l ≡ p1+p3, since l ·q = m2
µ and l2+q2 = 2m2

µ). The vector current form factors f1, f2,

f3 are known as vector, weak magnetism, and induced scalar form factors, respectively.

The axial vector current form factors g1, g2, g3 are the axial-vector, pseudotensor, and

induced pseudoscalar form factors, respectively [106]. In the absence of strong inter-

actions, only f1 and g1 would be present.

It is customary to make a number of assumptions to simplify the hadronic weak

current parametrization in Eq. 5.5. First, since the electromagnetic current is con-

served, it is assumed that also the weak vector current is conserved (conserved vector

current, or CVC, hypothesis). The CVC hypothesis is consistent with current exper-

imental knowledge, and implies a null induced scalar form factor: f3 = 0 [106, 107].

Second, G-invariance arguments for the strong interaction and experimental limits

on second-class currents are consistent with a null induced pseudotensor form factor:

g2 = 0 [106, 107]. Third, it is believed that the contribution of the induced scalar form

factor g3 to the CCQE cross-section is negligible, and g3 = 0 is generally assumed

[108]. We are therefore left with the f1, f2, and g1 form factors.

Using Dirac algebra, the CCQE differential cross-section in Eq. 5.2 can be reor-

ganized in power series of (s−u), where the Mandelstam variables s and u are defined

in the usual way (s = (p1 + p2)
2, u = (p1− p4)

2, and therefore (s−u) ' 4mNEν −Q2

in the lab frame):

dσ

dQ2
=

m2
NG2

F |Vud|2

8π(~c)4E2
ν

[A(Q2)±B(Q2)
(s− u)

m2
N

+
C(Q2)(s− u)2

m4
N

] (5.6)

where the positive (negative) sign refers to neutrinos (antineutrinos), and the explicit

dependence of the A, B, and C terms from the form factors, expressed in powers of

Q2/m2
N , is given by [108]:

A(Q2) = (|g1|2 − |f1|2)
Q2

m2
N

+
1

4
[|f1|2 + 4Re[f1f

∗
2 ] + |f2|2 + |g1|2](

Q2

m2
N

)2 −

− 1

16
|f2|2(

Q2

m2
N

)3 (5.7)
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B(Q2) = Re[g∗1(f1 + f2)]
Q2

m2
N

(5.8)

C(Q2) =
1

4
(|f1|2 + |g1|2) +

1

16
|f2|2

Q2

m2
N

(5.9)

In order to fully specify the CCQE cross-section, the Q2 dependence of the form

factors and their values at Q2 = 0 need to be specified. We start by the Q2 = 0

values of the form factors. The CVC hypothesis allows to relate the vector and weak

magnetism form factors f1 and f2 to the electromagnetic form factors F1 and F2 of

the proton and nucleon [106, 107]:

f1(Q
2) = F p

1 (Q2)− F n
1 (Q2) (5.10)

f2(Q
2) = F p

2 (Q2)− F n
2 (Q2)

The electromagnetic form factors F p,n
1 , F p,n

2 can be related to measured electromag-

netic properties of the nucleons in the non-relativistic limit Q2 → 0 [115, 116]:

FN
1 (Q2 = 0) = QN (5.11)

1

2mN

[F1(Q
2 = 0) + F2(Q

2 = 0)] = µ

where QN is the nucleon charge (in units of e) and µ is the magnetic moment (in

units of µN ≡ e
2mN

). On the other hand, the value for g1(Q
2 = 0) can be found

experimentally from nuclear β decays [106, 117]. We obtain for the Q2 = 0 values of

the weak form factors f1, f2, and g1:

f1(Q
2 = 0) = 1 (5.12)

f2(Q
2 = 0) = µp − µn − 1 ' 3.7059

g1(Q
2 = 0) ' 1.267

We now discuss the Q2-dependence of the form factors. Elastic electron-nucleon

scattering experiments at Q2 6= 0 probe the Q2 dependence of the electromagnetic

form factors F p
1 and F p,n

2 , and therefore of the weak form factors f1 and f2 (by the CVC

hypothesis). From the experimental point of view, the following linear combinations
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(known as Sachs electric and magnetic form factors) of the electromagnetic form

factors F p
1 , F p,n

2 are best measured [107]:

GN
E ≡ FN

1 − Q2

4m2
N

FN
2 (5.13)

GN
M ≡ FN

1 + FN
2

where N = p, n. Experimental results are roughly consistent with having the same

“dipole” form for the Q2 dependence of Gp
E, Gp

M , and Gn
M [107]:

Gp
E(Q2)

Gp
E(Q2 = 0)

=
Gp

M(Q2)

Gp
M(Q2 = 0)

=
Gn

E(Q2)

Gn
E(Q2 = 0)

= (1 +
Q2

m2
V

)−2 (5.14)

Furthermore, one finds that Gn
E(Q2) is consistent with zero at all Q2. Therefore, the

weak vector form factors f1 and f2 are parametrized in terms of a single parameter

mV , known as the vector mass:

f1(Q
2) =

1 + (1 + µp − µn)Q2/(4m2
N)

(1 + Q2/(4m2
N))(1 + Q2/m2

V )2
(5.15)

f2(Q
2) =

µp − µn

(1 + Q2/(4m2
N))(1 + Q2/m2

V )

In analogy with the vector form factors, the axial vector form factor is presumed

to obey a similar Q2 dependence, parametrized in terms of a second parameter mA

known as the axial mass [107]:

g1(Q
2) ' 1.267

(1 + Q2/m2
A)2

(5.16)

Global fits to elastic electron-nucleon scattering data suggest the value of 0.84

GeV for the vector mass, mV . On the other hand, the axial form factor can only

be extracted from neutrino scattering; analysis of current neutrino data suggest the

value mA=1.03 GeV for the axial mass describing the CCQE cross-section.

The implementation of the free nucleon CCQE cross-section in the NUANCE

event generator follows the formalism described above, with two sophistications. First

the value of the induced scalar form factor is not set to zero in NUANCE, and

a value obtained by lattice QCD calculations is assumed instead [118]. Second, a
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Figure 5.2: Free nucleon, differential charged-current, quasi-elastic cross-section per nu-

cleon dσCCQE/dQ2 as a function of Q2, based on Eq. 5.6. The three curves shown are for

different neutrino energies Eν : dotted for Eν = 0.4 GeV, dashed for Eν = 0.8 GeV, and

solid for Eν = 1.2 GeV.

Q2-dependence for the Sachs electric and magnetic form factors of the proton and

nucleon that is more general than the simple dipole form is assumed instead [119].

Both effects have a negligible effect on the muon neutrino, free nucleon CCQE cross-

section at MiniBooNE energies, and have been neglected in the discussion (but not

in the results presented) for the sake of simplicity.

Figure 5.2 shows the Q2 and Eν dependence of the differential νµ CCQE cross-

section dσ/dQ2 on a free target nucleon, based on the Llewellyn Smith CCQE formula

[108] described above and adopted by NUANCE. In the limit dσ/dQ2 → 0, the CCQE

cross-section is neutrino-energy independent, while the dependence at Q2 6= 0 is more

complicated. Figure 5.2 also shows the kinematic limit Q2
max allowed for a fixed

neutrino energy Eν ; neglecting the muon mass and for a stationary neutron, this is

given by Q2
max = 4E2

ν/(1 + 2Eν/mN).

In Figure 5.3, we show the comparison of the NUANCE computation of CCQE

neutrino scattering on free nucleons with experimental data on νµ CCQE scattering
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Figure 5.3: Total charged-current, quasi-elastic cross-section per nucleon σCCQE as a

function of neutrino energy Eν , as measured by a number of neutrino scattering experiments

using deuterium (D2) targets: ∗ points from [120]; ◦ points from [102]; • points from [121].

The solid line shows the NUANCE free nucleon prediction, with an axial mass mA of 1.03

GeV.

on deuterium (D2). The comparison in Fig. 5.3 is restricted to deuterium target data

since in this case the nuclear effects can be neglected.

5.3 Nuclear Effects

The target neutrons in MiniBooNE νµn → µ−p interactions are bound in Carbon

nuclei, and nuclear effects on CCQE (and other) interactions play an important role.

Nuclear effects can be divided into three main categories: Fermi motion of the target

nucleons, Pauli suppression of the phase space available to final state protons, and

final state interactions (FSI) [108]. The Fermi motion of the neutron is particularly

relevant in changing the interaction kinematics, the proton Pauli suppression causes

a Q2-dependent suppression of the CCQE cross-section, and FSI can change the



134

composition and kinematics of the hadronic part of the final state (p for CCQE

interactions).

The effect of Fermi motion and Pauli suppression on the CCQE cross-section

is computed in NUANCE within the Smith and Moniz formalism [122], assuming

a simple zero-temperature, relativistic Fermi gas model for the target nucleons and

protons. In this model, the neutron and proton occupation numbers in the nucleus

are momentum-independent and non-zero up to the Fermi momentum pF , and zero

for momenta p > pF . This model for nuclear matter is fully specified by defining the

Fermi momentum pF and nuclear binding energy EB. In NUANCE, these values for

Carbon are set to pF = 220 MeV/c and EB = 25 MeV. We now discuss the three

main nuclear effects on CCQE interactions.

5.3.1 Pauli Suppression

We first discuss Pauli blocking. The CCQE cross-section suppression S at a given

momentum transfer |~q| ≡ |~p1− ~p3| due to Pauli blocking can be calculated analytically

for a Fermi gas model; neglecting binding energy effects and for equal numbers of

protons and neutrons (which is the case for Carbon), one gets a suppression S =

1 − D/N , where N is the number of neutrons in the nucleus, and D is given by

[123, 124]:

D =


1
2
A[1− 3

2
|~q|

2pF
+ 1

2
( |~q|

2pF
)3], for |~q| < 2pF

0, for |~q| > 2pF

(5.17)

where A is the atomic weight (A = 12 for Carbon).

The suppression of the CCQE cross-section at a fixed momentum transfer |~q|

given by Eq. 5.17 and Carbon is shown in Fig. 5.4a); as expected, the suppression

is maximal at very low momentum transfers, and is absent if the neutron and proton

Fermi spheres are completely disjoint (|~q| > 440 MeV/c ⇒ Q2 > 0.18 GeV2) 3. The

3 The conversion from 3-momentum transfer |~q| to Q2 is done here for a stationary neutron, in

which case: Q2 = 2m2
N [

√
1 + |~q|2/m2

N − 1].
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Figure 5.4: Effect of Pauli blocking on the CCQE cross-section. Figure 5.4a) shows the

suppression factor S at fixed Q2, as given by Eq. 5.17; Fig. 5.4b) shows the suppression on

the total cross-section as a function of neutrino energy Eν , as calculated by NUANCE.

Pauli suppression of the CCQE cross-section is also shown in Fig. 5.4b) as a function

of neutrino energy Eν , as calculated by NUANCE. The suppression is particularly

important at low neutrino energies; at > 1 GeV neutrino energies, the bound nucleon

CCQE cross-section for Carbon is about 92% of the free nucleon CCQE cross-section.

Figure 5.5 compares the NUANCE predictions for the CCQE cross-section as

a function of energy, both assuming free neutrons and for neutrons bound in 12C

nuclei, with all of the existing low-energy neutrino CCQE scattering data. Data

taken with deuterium targets should be compared with the free nucleon NUANCE

curve, while heavier target data should be more properly compared to the bound

nucleon NUANCE curve. Overall, the NUANCE predictions agree well with the

measurements, given the limited accuracy (10-20%) of the measurements.
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Figure 5.5: Total charged-current, quasi-elastic cross-section σCCQE per target nucleon as

a function of neutrino energy Eν . The dashed line is the free-nucleon NUANCE calculation

given also in Fig. 5.3, the solid line is the NUANCE calculation assuming neutrons bound

in 12C nuclei. Both computations assume mA =1.03 GeV as the value for the axial mass.

These predictions are compared with data from a variety of light and heavy target neutrino

scattering data: deuterium (∗ points from [120]; ◦ points from [102]; • points from [121]),

propane-freon (� points from [125]), heavy freon (4 points from [126]), aluminum (♦ points

[127]; ? points from [128]).

5.3.2 Fermi Momentum

We now turn to the Fermi momentum of the bound target neutron. The Fermi

motion does not cause a significant variation of the total cross-section as a function

of the laboratory neutrino energy, but rather changes the kinematics of the CCQE

interaction. To illustrate this point, we consider the quasi-elastic peak of the CCQE

cross-section in the (ν, Q2) plane, where we define ν as the energy transfer between

the lepton (or hadron) part of the interaction: ν ≡ Eν − Eµ. In the CCQE process

a neutrino scatters off the entire nucleus, and therefore the CCQE cross-section is

completely determined by the kinematics: d2σ/dQ2dν ∝ δ(Q2−2mNν), if one neglects
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Fermi momentum and binding energy. The simple CCQE kinematic relationship

Q2 = 2mNν gets modified in two ways in the presence of Fermi momentum pF

and binding energy EB. First, the reaction cannot occur unless ν = Eν − Eµ =

Ep − (En − EB) > EB, since the Fermi gas model and Pauli suppression impose the

|~pn| ≤ pF and |~pp| > pF constraints. Second, for a fixed ν value, a non-zero range of

Q2 values are now kinematically allowed: Q2
min < Q2 < Q2

max, where:

Q2
max,min = −2m2

N + 2EnEB − E2
B + 2(ν + En − EB)En − (5.18)

2(ν + En − EB)EB ± 2pF

√
(ν + En − EB)2 −m2

N

where En =
√

p2
F + m2

N , and the minimum/maximum allowed Q2 values correspond

to the case where the outgoing proton is directed along or opposite to the incoming

neutron direction, respectively, and the neutron momentum equals the Fermi mo-

mentum. The spread in the kinematic variables introduced by the Fermi motion is

considerable, as can be seen from the 2D histogram of CCQE events in the (ν,Q2)

plane predicted by NUANCE, shown in Fig. 5.6. Figure 5.6 also shows the the an-

alytic constraints on the CCQE kinematics derived above in the presence of Fermi

momentum (for pF = 220 MeV/c) and binding energy (for EB = 25 MeV), and the

results agree well with NUANCE.

5.3.3 Final State Interactions

Finally, we discuss final state interactions. Hadrons produced in neutrino interactions

are subject to final state interactions in their way out of the nucleus. NUANCE simu-

lates pion-nucleon, kaon-nucleon, and nucleon-nucleon interactions based on standard

PDG cross-sections [60], including charge exchange, pion absorption inelastic scatter-

ing, and elastic scattering. As a result, FSI change both the composition and the

kinematics of the final state produced in the neutrino interaction. In particular, fi-

nal state interactions play a significant role in determining the background to CCQE

events in MiniBooNE. As discussed in Chapter 7, the main background to CCQE
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Figure 5.6: Effect of Fermi motion and binding energy on CCQE kinematic variables. The

2D histogram shows Q2 ≡ −(pν − pµ)2 versus ν ≡ Eν − Eµ for CCQE events generated

with NUANCE, without any detector reconstruction effects (i.e., a perfect detector). The

area enclosed by the solid line is the one derived in the text, assuming EB = 25 MeV and

pF = 220 MeV/c. The panel a) uses a linear scale to display the fractional event yields per

bin, while panel b) uses a logarithmic scale.

events is due to charged-current, resonant single pion production. Following this re-

action, the produced pion (typically with a kinetic energy of a few hundred MeV) can

be absorbed within the nucleus and cannot be observed. As an example of validation

of the NUANCE treatment of final state interactions, Figure 5.7 shows the NUANCE

prediction for the π+ absorption cross-section as a function of the pion kinetic energy

in the range of relevance for MiniBooNE neutrino interactions, and how well the pre-

diction compares with data [129]. The available data constrain the pion absorption

cross-section in Carbon simulated in NUANCE at the 20-30% level.

In order to quantify the effect of final state interactions in limiting the ability

to identify “genuine” CCQE interactions even in a perfect neutrino detector, we can

categorize the simulated interactions based on the types of particles present in the
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Figure 5.7: Example of validation of NUANCE treatment of final state interactions: π+

absorption cross-section in Carbon as a function of π+ kinetic energy Kπ+. The plot shows

the NUANCE predictions overlaid with experimental data: ◦ points from [129], • points

from [130].

final (observable) state, as opposed to classify them according to the type of un-

derlying physics mechanism responsible for the interaction. We define interactions

as “charged-current, quasi-elastic like” (CCQElike) if only muons, nucleons and soft

photons are present in the final state. The fraction of CCQElike events predicted by

NUANCE for the MiniBooNE flux is then:

ηCCQElike = P (CCQElike|CCQE) · ηCCQE + P (CCQElike|CCQE) · ηCCQE (5.19)

where P (CCQElike|CCQE) (P (CCQElike|CCQE)) are the probabilities for a CCQE (non-

CCQE) interaction to have a final state consistent with the final state expected for

a CCQE interaction in the absence of final state effects (CCQElike final state), and

ηCCQE and ηCCQE are the CCQE and non-CCQE fractions of neutrino interactions,

respectively.

Table 5.2 shows the relevant numbers appearing in Eq. 5.19. According to NU-

ANCE predictions, categorizing neutrino interactions based on their observable final
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ηCCQE (%) P (CCQElike|CCQE) (%) P (CCQElike|CCQE) (%) ηCCQElike (%)

39.9 97.7 9.4 44.6

Table 5.2: Charged-current quasi-elastic events and final state interactions. The Table gives

the fraction ηCCQE of CCQE events predicted by NUANCE assuming the MiniBooNE flux,

and also the fraction of expected MiniBooNE events with a final state consistent with the

CCQE one, ηCCQElike. The latter number is computed based on ηCCQE and the proba-

bilities for an event to “look” quasi-elastic given its CCQE or non-CCQE true identity:

P (CCQElike|CCQE) and P (CCQElike|CCQE).

state increase the CCQElike fraction to 44.6%, compared to a true CCQE fraction

of 39.9%. Figure 5.8 shows how the CCQElike and CCQE cross-sections compare as

a function of neutrino energy, over the 0 < Eν (GeV) < 2 neutrino energy range.

Since resonant processes become more and more important with increasing energy

compared to the quasi-elastic one, and since pion absorption is one of the main nu-

clear effects, it is not surprising that the effective CCQE cross-section increases as

the neutrino energy increases. On the other hand, nuclear effects that would tend to

produce a depletion in the effective CCQE cross-section, such as the pion production

in the rescattering of a final state proton from a CCQE interaction with the Carbon

nucleus, are simulated as well in NUANCE, but are less important than pion absorp-

tion.
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Figure 5.8: Comparison of the CCQE (solid circles) and “CCQElike” (empty circles) cross-

sections per nucleon as a function of neutrino energy Eν , as predicted by NUANCE.



Chapter 6

Overview of the MiniBooNE

Detector

6.1 Overview of the MiniBooNE Detector Hard-

ware

The MiniBooNE neutrino detector consists of a carbon steel spherical tank of 6.1 m

radius and filled with approximately 800 tons of undoped mineral oil. The center of

the detector is located at a distance of 541 m from the neutrino production target,

below a dirt overburden of about 3 m. Schematics of the MiniBooNE site plan and

of the MiniBooNE detector enclosure are shown in Figs. 3.1 and 6.1, respectively.

Neutrino interactions in the oil are observed by detecting the Cherenkov and scintil-

lation photons produced by neutrino-induced charged tracks traveling in the detector

medium. An array of 1,280 photomultiplier tubes (PMTs), located at a radius of 5.75

m and oriented toward the center of the tank, is used to record the number and ar-

rival time of the photons produced in the fiducial volume of the detector. The PMTs

provide a uniform, 10% coverage of the whole detector spherical inner surface. The

spherical detector shell at 5.75 m < r < 6.1 m is optically isolated from the main

142



143

Figure 6.1: Schematic of the MiniBooNE detector enclosure, showing the vault containing

the spherical detector, the electronics/utilities area located above the detector, and the dirt

overburden.

detector region, and serves as a veto region to reject cosmic-ray induced activity in

the tank. Photons produced in the veto region are read out by 240 PMTs of the same

type employed in the main detector region. The photoelectron charge and time of

the PMT signals are continuously digitized and recorded for every proton beam spill.

A laser system, a cosmic ray muon hodoscope, and seven scintillation cubes located

inside the detector, are used to calibrate various aspects of the MiniBooNE detector

response. Hardware details related the MiniBooNE mineral oil, PMT readout, data

acquisition system, trigger, and calibration devices follow. More details can be found

in [131].

6.1.1 The Nuclear Target: MiniBooNE Mineral Oil

Neutrino interactions in MiniBooNE proceed primarily via interactions with mineral

oil, since the 810 tons of oil filling the detector comprise about 95% of the total de-

tector tonnage. The remaining 5% detector tonnage consists of the 1 cm thick steel

spherical tank, the optical barrier supporting the PMTs, the PMTs themselves, and

cables. The interactions from nuclear targets other than mineral oil in the detec-
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tor, and from the dirt surrounding the detector, are negligible once a fiducial volume

requirement is applied to study muon neutrino, charged-current quasi-elastic interac-

tions (see Chapter 7).

The mineral oil used in MiniBooNE is Marcol 7, manufactured by Exxon / Mo-

bil. This oil was chosen for its long light attenuation length, high index of refraction

and small dispersion over the wavelength range 280-640 nm, its low viscosity, its low

reactivity with materials in the detector, and its scintillation light production. The

Marcol oil density is 0.855 g/cm3. Details on the mineral oil optical properties of

relevance to the MiniBooNE detector response are given in Sections 6.2.1 and 6.2.2.

The oil is kept at ambient temperature. An overflow tank with a capacity of

1% of the main tank volume is used for oil containment following thermal expansion.

The oil can be recirculated and cooled at a rate of about 100 liters per minute, if

necessary. Moreover, to maintain the detector optimal optical characteristics over

time, a nitrogen gas layer above the oil is kept at all times to avoid exposure to air,

and therefore minimize the oxygen impurities in the oil. If necessary, nitrogen gas

can also be continuously bubbled into the detector.

6.1.2 Optical Readout: MiniBooNE Photomultiplier Tubes

The light produced by neutrino interactions is detected by 1,520 main and veto pho-

tomultiplier tubes. All main tubes are mounted on the inner side of a spherical

support structure built within the detector, at a radius of 5.75 m, while veto tubes

are mounted on the carbon steel tank walls, at a radius of 6.1 m. Figure 6.2 shows a

picture of the actual installation of main and veto PMTs in the detector, prior to oil

filling.

Most of the PMTs installed in MiniBooNE, 1196, are Hamamatsu R1408 PMTs

recycled from the LSND experiment, and 324 are Hamamatsu R5912 PMTs that

were newly purchased for the experiment. Both PMT models have a photocathode
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Figure 6.2: Picture of the MiniBooNE detector optical barrier and its PMT installation,

before the detector was filled with mineral oil. The inner and outer surfaces are painted in

black and white, respectively, to minimize and maximize light reflection.

diameter of 20 cm. All R5912 PMTs, and the LSND R1408 PMTs offering the best

performances [132], are mounted in the main detection region, and PMTs character-

ized by low dark rates were chosen for the veto region. Figure 6.3 shows a schematic

of a MiniBooNE PMT with its mounting structure for one of the 1,280 main PMTs.

The R1408 (R5912) tubes have a 9 (10) stage dynode chain amplification. The PMTs

are operated at an average high voltage of about 1,800 Volts. The operating volt-

age is set separately for each tube, to ensure a uniform gain throughout the tank of

1.6 · 107, as dictated by MiniBooNE electronics. Typical dark noise rates of 3 kHz

for the MiniBooNE PMTs have been measured at ambient temperature and default

operating voltages, low enough to satisfy the experiment’s needs. Aspects of the PMT

response that are of relevance to the event reconstruction are given in Section 6.2.3.
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Figure 6.3: Schematic of a MiniBooNE PMT, together with its support frame used for

installation in the MiniBooNE main detection region. To give a sense of scale, the diameter

of the photocathode is about 20 cm.

6.1.3 Data Acquisition System and Trigger

The PMT signals are routed to the electronics area located above the detector, where

further amplification and digitization occurs. As for the PMTs, the electronics em-

ployed in MiniBooNE is also based on existing LSND hardware, modified to fit the

different needs of the experiment.

Because of the high number of channels and the DAQ rate requirements, a full

digitization of the PMT signal waveforms is not performed; rather, only the overall

charge and time associated with each PMT hit is recorded. A schematic of the charge

and time signal formation is shown in Fig. 6.4. The preamplified PMT signals Vpmt

are continuously integrated via a capacitive circuit contained in the MiniBooNE “QT

boards”, with an exponential decay time of about 1,200 ns, generating a second sig-

nal Vq. The QT boards (as in “charge/time boards”) serve eight PMT channels each,

and are arranged into twelve QT crates each hosting 16 QT boards, for a total of

12× 16× 8 = 1, 536 channels, enough to serve all the 1,520 MiniBooNE PMTs. The

charge signal Vq is continuously digitized by the DAQ, at 100 ns time intervals. If
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Figure 6.4: Schematic of the PMT charge and time digitization in MiniBooNE.

the PMT signal Vpmt exceeds a voltage corresponding to about 0.25 photoelectrons,

a PMT discriminator signal is activated, and a linear time ramp Vt is started, as

shown in Fig. 6.4. The time signal Vt is also continuously digitized every 100 ns. The

purpose of the voltage time ramp is to obtain a precise determination of the time at

which the PMT signal crosses threshold, since much better than 100 ns time accuracy

is necessary for MiniBooNE event reconstruction. The time ramp is reset to baseline

when two 100 ns time intervals are elapsed since the time at which the PMT signal

crosses threshold.

The trigger logic is designed to decide whether or not to capture a fixed DAQ

time window of PMT charge and time data for all PMTs. The trigger queries the

status of several trigger conditions to make this decision. Some trigger conditions use
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detector data only, for example requiring a minimum number of PMT signals above

threshold in the main detector region. However, the most important trigger condition

is enabled whenever protons are delivered from the Fermilab Booster accelerator to

the MiniBooNE target hall, regardless of the detector status. All neutrino-induced

events described in the following are selected based on this trigger condition. The

time window captured by this beam trigger is 19.2 µs long, timed such that the 1.6 µs

long beam spill occurs at 4.6 < ∆t (µs) < 6.2, where ∆t is the time with respect to

the beginning of the time window. The duration of the time window is chosen to be

able to detect the electrons from muons decaying at rest in the detector over about

6 muon lifetimes. Other important external trigger conditions are set up for detector

calibration (discussed in Sections 6.1.4 and 6.3.2), and for detecting random windows

in time to study the detector activity in an unbiased way.

Whenever a trigger condition is met, an event with the following information is

recorded for each PMT channel: the PMT channel number, the 100 ns time interval

that precedes the discriminator firing (the one corresponding to the (t−1) time in Fig.

6.4), four digitized Vq values, and the corresponding four digitized Vt values, the one

that precedes the discriminator firing, and the three subsequent ones. In addition, in

the rare occurrence that charge exceeds the ADC dynamic range of about 20 PEs, a

variation on the DAQ scheme described above is adopted to fully retrieve the PMT

charge information.

This digitization scheme allows the recovery of the intrinsic charge and time res-

olution of the PMTs, without introducing any additional smearing associated with

the data acquisition itself. The MiniBooNE PMT charge and time response calibra-

tions, which are of direct relevance to the reconstruction of neutrino interactions in

the detector, are given in Section 6.2.3.
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6.1.4 Calibration Devices

The detector is equipped with two systems for its hit-level and reconstruction-level

calibration, discussed in Sections 6.2.3 and 6.3.2, respectively. These two calibra-

tion systems complement the reconstruction-level calibration samples that can be

extracted using MiniBooNE detector information only.

Laser/flask system

A diode laser located in the detector electronics area can deliver sub-ns light pulses

into the detector. The laser light wavelength can be set to either 397 nm, or 438 nm;

the laser light intensity and repetition rate are adjustable, and of the order of O(µW)

and O(Hz), respectively. The light is transmitted from the laser to the detector via

five optical fibers. Four optical fibers are terminated with flasks filled with dispersive

material, yielding a nearly isotropic laser light emission from the flasks. The four

flasks are located at various positions within the detector, with one flask positioned

at the detector center. The fifth optical fiber is not coupled to a dispersive flask,

and yields a collimated (∼ 10o opening angle) beam of laser light in the mineral oil.

A special calibration trigger enables to record the detector activity following laser

light calibration events, which occur asynchronously with respect to the proton beam

delivery to the MiniBooNE target hall 1. As described in Section 6.2.3, laser events

allow to calibrate the individual PMT responses.

Cosmic Ray Muon Tracker and Scintillation Cubes

Cosmic ray muons and their decay electrons provide extremely useful event samples

for calibrating the detector as a whole, at the reconstruction-level (see Section 6.3.2).

The cosmic ray muon hodoscope located above the detector and the scintillation

cubes located inside the detector allow to record the detector activity due to muons

1Laser events are vetoed in the case of overlap with the beam spill.
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with known direction, and with known pathlength and energy deposition inside the

detector.

The cosmic ray muon hodoscope consists of four scintillator planes, spatially sep-

arated into two layers of two planes each. The muon tracker trigger is enabled by

a 4-fold scintillator plane time coincidence. In a coordinate system where ~y points

upwards and ~z along the neutrino beam direction, the two layers are separated by

∆y ≡ ytop − ybottom ' 100 cm. The two planes of scintillator strips in each layer are

oriented to provide one (x, y) and one (y, z) 2-dim coordinate, therefore providing

a full 3-dimensional location. From the top and bottom layer 3-dimensional coordi-

nates, the muon track direction and entry point inside the detector can be extracted.

The muon tracker dimensions and location with respect to the detector allow to cali-

brate the detector track direction reconstruction algorithms over the the range −1 <

cos θy < cos θy,max, −
√

1− cos θ2
y,max < cos θx, cos θz <

√
1− cos θ2

y,max, where

cos θx, cos θy, cos θz are the direction cosines of the muon track direction (cos θy = −1

for downward-going muons), and cos θy,max ' −0.65. Moreover, the muon tracker

scintillator strip segmentation and location yields an angular resolution intrinsic to

the tracker of about 30 mrad, which is smaller than the typical 100 mrad angular

spread expected for multiple Coulomb scattering of muons in the detector [133].

Seven optically isolated cubes, made of scintillator material and of a few cm on a

side, are deployed inside the MiniBooNE detector. The scintillation light produced by

a charged particle moving inside a cube is collected by an optical fiber, and directed

to a 1 inch PMT located outside the detector. The cube trigger is enabled whenever

a time-delayed coincidence between two light pulses from the same cube are detected

by the PMT readout, consistent with an event having a muon reaching and stopping

inside a cube (first light pulse), followed by a second scintillation light pulse produced

by the muon decay electron along its path inside the cube. Therefore, cube events

allow the determination of the stopping position of a muon inside the MiniBooNE de-

tector to a few cm accuracy, including the cube survey position accuracy. The cubes
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are located at various positions inside the detector, so that the distances between the

cubes and the detector surface range from 15 to about 400 cm. Given the energy loss

of muons in oil, the cube positions allow to study muons that deposit between 20 and

800 MeV of energy inside the tank [134].

The coincidence between a muon tracker trigger signal and a scintillation cube

trigger select muons with known direction and entry point position (from the tracker),

and known stopping point (from the cube); from the entry and stopping points, the

muon pathlength and the energy deposition inside the detector are determined. On

an event-by-event basis, the muon energy resolution measured by the tracker/cube

calibration system is dominated by the few % fluctuations in energy loss (range strag-

gling).

6.2 The MiniBooNE Detector Response

6.2.1 Light Production

Optical photons 2 are produced in the mineral oil by charged tracks via the mecha-

nisms of Cherenkov and scintillation light production.

Cherenkov Light

Cherenkov light production in a dispersive medium with index of refraction n, by a

relativistic particle of charge ze and moving at a velocity β > 1/n, is given by [60]:

d2N

dxdλ
=

2παz2

λ2
sin2 θC (6.1)

where d2N/dxdλ is the number of Cherenkov photons emitted per particle’s unit

path length x and per unit photon wavelength λ, α = e2/(~c), and θC is the angle of

2We define here optical photons as photons in the 250 < λ (nm) < 650 wavelength range.
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Cherenkov light emission with respect to the particle’s direction, given by:

cos θC =
1

βn(λ)
(6.2)

The refractive index n of the MiniBooNE mineral oil is well described by the

Cauchy parametrization:

n(λ) = nD + B(
1

λ2
− 1

λ2
D

) (6.3)

where λ is the photon wavelength in nm, λD = 589.3, and the parameters at 20 degC

have been measured to be nD = 1.4684±0.0002 and B = (4240±157) nm2 [135, 136].

As the particle slows down (decreasing β), Cherenkov light is emitted at smaller

angles θC , and the number N of Cherenkov photons produced decreases. Cherenkov

light production is absent if β < 1/n(λ). As shown in Fig. 6.7a), the MiniBooNE

PMTs are sensitive to photons over the wavelength range 280 < λ (nm) < 640; the

Cherenkov flux yield per unit track length for muons, integrated over this wavelength

range and as a function of the muon momentum pµ, is shown in Fig. 6.5a. 3.

A typical 300 MeV/c muon produces about 450 Cherenkov photons per cm in

mineral oil, in the 280 < λ (nm) < 640 photon wavelength range. For this muon

momentum and in this photon wavelength range, the mean and RMS of the photon

wavelength spectrum are 410 nm and 99 nm, respectively; as discussed Sections 6.2.2

and 6.2.3, the Cherenkov emission spectrum matches well the photon wavelength

range of the MiniBooNE detector response. Moreover, the mean and RMS of the

cosine of the Cherenkov angle in the same photon wavelength range 280 < λ (nm) <

640 and for the same muon momentum of 300 MeV/c are 0.714 and 0.006, respectively;

the angular distribution of Cherenkov emission is anisotropic. Finally, the Cherenkov

light emission is prompt, and chromatic dispersion effects on the Cherenkov photon

3The MiniBooNE detector is somewhat sensitive to λ < 280 nm photons as well, since wavelength

shifting processes, such as fluorescent emission discussed in Sec. 6.2.2, are present. For this reason,

photon production in the 250 < λ (nm) < 650 wavelength range is considered in the detector

simulation.
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Figure 6.5: Number of optical photons produced per unit path length of muons in Mini-

BooNE mineral oil, as a function of muon momentum pµ. Figure 6.5a shows Cherenkov

light production per unit path length, dNc/dx, integrated over the photon wavelength range

280 < λ (nm) < 640. Figure 6.5b shows scintillation light production per unit path length,

dNs/dx, integrated over the whole scintillation emission spectrum.

propagation (due to the variation of the group velocity with photon wavelength) are

negligible.

Scintillation and Fluorescence Light

Charged tracks traversing mineral oil excite the target molecules because of energy

deposition; the following de-excitation of the mineral oil organic molecules is accom-

panied by isotropic and delayed scintillation light emission. A related process is the

excitation of target molecules by optical photons (as opposed to charged tracks);

the following de-excitation of mineral oil molecules is accompanied by fluorescence

light emission. In both cases, several fluorophores contribute to the light emission.

The emission wavelength spectrum and the emission time spectrum of scintillation

and fluorescence light depend on the details of the mineral oil chemical composition

and molecular structure, and are determined experimentally. In particular, impu-

rities present in the mineral oil, most notably the Vitamin E added to the oil as
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anti-oxydant, are believed to be responsible for scintillation and fluorescence light

emission.

Scintillation and fluorescence light are only approximately proportional to the

ionization loss of tracks in mineral oil, and recombination and quenching effects are

believed to reduce the light yield for highly ionizing particles. The semi-empirical

Birk’s saturation law for energy deposition is typically used to convert the ionization

energy loss per unit path length and unit material density, dE/dx (MeV/(g cm−2)),

into a corrected energy loss dE ′/dx that is directly proportional to the light output

[60]:

dE ′/dx =
dE/dx

1 + kBdE/dx
(6.4)

where the Birk’s constant kB is about 0.014 g cm−2 MeV−1 for mineral oil.

The properties of scintillation light production are determined empirically, both

from external measurements and from MiniBooNE detector data. The identification

of the mineral oil fluorophores, the decay time constant of their exponential light

emission, and their wavelength emission spectra, are determined from external mea-

surement on time resolved fluorescence [137]. The light yield per energy deposited

for each fluorophore is determined both from these external measurements, and from

MiniBooNE detector calibration data using electrons from muon decays at rest. These

properties are summarized in Tab. 6.1.

The total scintillation light yield per unit path length, for a muon traveling in

mineral oil, is given in Fig. 6.5b as a function of muon momentum. A typical 300

MeV/c muon produces about 90 scintillation photons per cm in mineral oil, integrated

over the entire photon emission spectrum, 270 < λ (nm) < 460. The typical pho-

ton wavelengths characterizing scintillation emission spectra for the various mineral

oil fluorophores are shorter than the corresponding ones associated with Cherenkov

light emission, and therefore scintillation photons do not match equally well the pho-

ton wavelength range of the MiniBooNE detector response; consequently, the typical

450 : 90 ∼ 5 : 1 ratio between Cherenkov and scintillation photons at production
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Fluorophore dNs/dE′ τ (ns) Emission Spectrum

(photons/MeV) Mean(λ) (nm) RMS(λ) (nm)

1 24.84 14.0 303 13

2 20.52 33.0 360 27

3 5.94 1.0 331 18

Total 51.30

Table 6.1: Properties of scintillation light emission spectra in MiniBooNE mineral oil. The

properties of the three dominant fluorophores are listed. dNs/dE′ is the number of scintilla-

tion photons emitted per unit energy deposition, where the energy deposition is corrected for

Birk’s saturation law (see text for details); τ is the decay time constant of the exponential

time distribution of the emitted light; Mean(λ) and RMS(λ) are the mean and RMS of the

emission wavelength spectrum, respectively.

is translated in a larger ratio at detection. As already mentioned, scintillation light

production is isotropic and characterized by delay times of the order of tens of ns (see

Tab. 6.1).

6.2.2 Light Transmission

Optical photons typically have to traverse distances of the order of a few meters be-

fore reaching a PMT located on the optical barrier surface, and be detected. Light

propagation over distance is affected mainly by three physics processes: photon ab-

sorption, scattering, and fluorescence. The term “photon attenuation” is used here

to describe these three physics process cumulatively, and it is to be interpreted as the

attenuation of photons measured along the direction specified by their initial direction

at production. The individual absorption, scattering, and fluorescence rates, together

with the overall attenuation rate, are shown in Fig. 6.6 as a function of the photon

wavelength. The attenuation rate is defined as the number of photon interactions

resulting in attenuation (as specified above) per unit path length. For typical photon



156

10
-5

10
-4

10
-3

10
-2

10
-1

250 300 350 400 450 500 550 600 650

λ (nm)

R
at

t (
cm

-1
)

Figure 6.6: The attenuation rate Ratt in MiniBooNE mineral oil as a function of photon

wavelength λ is shown by the thick, solid curve. The individual components to the attenu-

ation rate are also shown: fluorescence rate (thin, solid line), scattering rate (dashed line),

absorption rate (dotted line).

wavelengths of 400 nm, the attenuation rate is Ratt ' 7 · 10−4 cm−1, corresponding

to an attenuation length of Latt ' 1/Ratt ' 14 m, that is of the order of the Mini-

BooNE detector diameter [137]. For the same wavelength of 400 nm, about half of

the attenuation is interpreted as due to absorption, and half as due to to scattering.

Fluorescence

Fluorescence is the process in which an optical photon (created by either Cherenkov

or scintillation light production processes) is absorbed by the mineral oil in the form of

molecular excitation, and re-emitted at a longer wavelength, different direction, some

time after absorption. Fluorescence measurements using samples of MiniBooNE min-

eral oil were carried out both at Johns Hopkins University and at Fermilab [137].

The emission spectra of fluorescent light have already been discussed in connection

to scintillation light production. The measured relationship between absorption and

emission spectra for the mineral oil fluorophores is typically characterized by Stokes’
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shifts of a few tens of nm, where the Stokes’ shift refers to the wavelength difference

between the peak of the absorption and emission spectra [60]. The measured contri-

bution of fluorescence to attenuation becomes significant only for photon wavelengths

below about 300 nm; in this case, photons with longer wavelengths (and therefore

subject to smaller attenuation rates) are emitted.

Scattering

Scattering is defined here as the process in which an optical photon interacts with

target molecules, gets deflected and possibly changes its polarization state, but not

its wavelength. Scattering measurements of photons in mineral oil were carried out at

Princeton University [138]. The dominant contribution to scattering is measured to

be due to isotropic Rayleigh scattering, although also anisotropic Rayleigh scattering

and Raman scattering are observed, contributing to roughly 20% and 7% of the total

scattering rate, respectively 4. All scattering rate components approximately decrease

as λ−4 with increasing photon wavelength λ.

Absorption

Photon attenuation in mineral oil, due to either fluorescent emission, scattering, or

absorption, was measured at Fermilab with different experimental setups and over

a wide photon wavelength range [137]. The difference between the attenuation rate

curve as a function of wavelength obtained by these measurements on the one hand,

and the sum of the fluorescence and scattering rates discussed above on the other, is

interpreted as photon absorption in mineral oil.

4In this context, (an)isotropic refers to the nature of the density flucutations responsible for the

Rayleigh scattering process. Both isotropic and anisotropic Rayleigh scattering are anisotropic, as

far as angular distributions are concerned.
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6.2.3 PMT/DAQ Response, and Hit-Level Detector Calibra-

tion

Having described the production and transmission of optical photons to the PMT

surface, we are left with the description of the PMT/DAQ charge and time response.

Charge Response

The charge response can be classified into three parts: photocathode response, charge

collection response, and charge digitization. The photocathode response is described

by the quantum efficiency, that is the probability to convert one photon of wavelength

λ into one photoelectron at the photocathode surface. The charge collection efficiency

gives the probability, for a photoelectron created at the photocathode surface, to be

collected and amplified by the PMT dynode chain. The quantum efficiency, defined

here as the phtocathode efficiency times the charge collection efficiency, is shown in

Fig. 6.7a as a function of photon wavelength λ, for both R1408 and R5912 PMTs

[139]. For both types of PMTs, the quantum efficiency peaks at around λ = 400 nm;

moreover, the quantum efficiency of R1408 PMTs is about 15% lower than the R5912

PMT quantum efficiency over all wavelengths.

The charge collection response is determined by the photocathode geometry

(shown in Fig. 6.3), the incident light spatial and angular distribution on the mineral

oil/photocathode boundary, and by details of photon and electron transport at the

photocathode and through the PMT dynode chain. The charge collection angular

response has been measured by immersing the PMTs in mineral oil, and by illumi-

nating their photocathode surface with a broad, parallel beam of light, for various

angles η between the photon beam and the PMT symmetry axis (head-on light for

cos η = 1). The results are shown in Fig. 6.7b, normalized to the cos η = 1 response.

The dominant effect in Fig. 6.7b is the solid angle subtended by the photocathode

surface with respect to the beam of light; since R1408 and R5912 PMT photocathode
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Figure 6.7: Quantum efficiency and angular response for MiniBooNE PMTs. Figure 6.7a

shows the quantum efficiency as a function of incident photon wavelength λ, for R1408

(solid curve) and R5912 (dashed curve) PMTs. Figure 6.7b shows the angular efficiency

for both R1408 and R5912 PMTs, where η indicates the angle between the direction of a

broad beam of light and the PMT symmetry axis, relative to the efficiency for light hitting

the PMTs head-on (cos η = 1).

geometry is the same, the curve in Fig. 6.7b is approximately applicable to both

types of PMTs.

The details of electron transport through the PMT dynode chain determines the

PMT charge resolution, that is the probability to measure an amount of charge q for

a given amount µ of photoelectron charge created at the photocathode. Photomulti-

pliers of type R1408 and R5912 have a different dynode structure, leading to different

charge collection responses. The charge resolution is measured via the MiniBooNE

laser/flask calibration system, using the charge digitization scheme described in Sec-

tion 6.1.3. Therefore, the PMT charge calibration relating the charge ADC values to

number of photoelectrons is described first.

The charge calibration [140] is extracted by directing very low levels of light to the

laser central flask, located at the same distance with respect to all MiniBooNE PMTs.
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The light level and flask/PMT distance chosen ensure that, most of the times, each

PMT is hit by at most one photon for every laser light pulse. Small corrections due to

multi-PE hits are taken into account in the charge calibration procedure. The PMT

charge calibration can be extracted, individually for each PMT, by requiring that

〈q〉 = 1 PE, where the average is intended over a large number of hits with nonzero

charge. More specifically, calibrated charges q are extracted from ADC values via:

q [PE] =
Vq [ADC]

gq [ADC/PE]
(6.5)

where gq are calibration constants converting ADC counts to number of photoelec-

trons, while Vq [ADC] is a function using the four digitized charge ADC values to

obtain the total PMT integrated charge, in ADC counts. The calibration constants

gq are different for each PMT channel, to account for different PMT gains, preampli-

fier gains, and different PMT dynode structures. The function Vq is common to all

PMTs of the same type (R1408 or R5912), but different for the two types of PMTs,

to account for the different PMT signal shapes.

Having briefly defined the PMT charge calibration procedure, we can discuss the

PMT charge resolution on a hit-by-hit basis [141, 142]. The PMT charge resolution

plays an important role in the accuracy of the MiniBooNE energy reconstruction.

The probability to measure a calibrated charge q given a predicted average amount

µ of charge is shown in Fig. 6.8, for both R1408 and R5912 PMTs, and for average

PMT charges of µ = 5, 1, and 0.1 photoelectrons. The charge resolutions shown

in Figs. 6.8a and b, for the typical cases of µ = 5 and 1 average photoelectrons,

are a convolution of a Poisson distribution in the number of photelectrons, with the

intrinsic PMT charge resolution distribution for a given number of photoelectrons.

The intrinsic PMT charge resolutions alone for single-photoelectron hits are shown

in Fig. 6.8c, corresponding to µ =0.1 average photoelectrons, since multi-PE hits

have a negligible impact in this case. The charge likelihood curves in Fig. 6.8c have

been zero-suppressed. Typical intrinsic charge resolutions for R1408 (R5912) PMTs

are about 0.8 (0.5) PEs for single-PE hits, where the resolution is defined here as the
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Figure 6.8: Charge response to 5 (panel a), 1 (panel b) ), and 0.1 (panel c) ) average

number of photoelectrons µ, for MiniBooNE PMTs. The response of R1408 (LSND) PMTs

is shown with solid histograms; the response of R5912 (new) PMTs is shown with dotted

histograms. The charge response shown in c) has been zero-suppressed.

RMS of the distributions shown in Fig. 6.8c for q > 0.

This charge resolution is sufficient for obtaining a satisfactory energy reconstruc-

tion, given the large number of PMT hits in a typical neutrino interaction: for exam-

ple, muon neutrino charged-current, quasi-elastic neutrino interactions reconstructed

in MiniBooNE have a mean number of PMT hits in the main detector region of about

500, and a mean charge per PMT hit of about 3 photoelectrons.

The procedure used to extract the charge resolution functions P (q; µ) shown in

Fig. 6.8 also use the laser/flask system, this time over a wide range of laser light

intensity and a wide range of laser flask / PMT distances. The reconstruction algo-

rithm used in this case to predict the amount of PMT charge µ is based not only

on the light transmission (Section 6.2.2) and PMT response (this Section) properties

described above, but also on the known laser light production characteristics (wave-

length and position of light source, angular distribution of emitted light, etc.). The

normalization constant for a given light intensity is determined via 〈µ〉q>0 = 〈q〉q>0,

where the average is over all non-zero charge PMT hits. Based on the PMT charge
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prediction, it is possible to predict the fraction of events in which no photocathode

charge is created, and therefore extract the full charge resolution function including

the q = 0 case, also shown in the distributions in Fig. 6.8. These histograms include

the effects due to the discriminator threshold of approximately 0.25 PE, and PMT

hits corresponding to a charge below threshold are given in the q = 0 bin. Two charge

resolution functions are obtained with laser data, one for R1408 PMTs, and one for

R5912 PMTs. The charge response P (q; µ) described above forms the basis of the

charge likelihood part of the MiniBooNE maximum likelihood event reconstruction

discussed in Section 6.3.1.

Time Response

Similarly to the charge response, the time response also depends both on details

related to the PMT charge collection mechanisms, and on the DAQ digitization al-

gorithm used in MiniBooNE. Moreover, the time response is also affected by the

intrinsic time delays associated with scintillation and fluorescence light production,

and scattering. As for the charge response, we start by describing the PMT time

calibration, and then discuss the PMT time resolution.

The time calibration for each of the MiniBooNE PMTs, relating time ADC values

to charge collection times, can be extracted with laser events [140]. More specifically,

calibrated times tcorr, corrected for the photon transit time from the light source to

the PMT, are obtained via:

tcorr = traw( gt[ADC/ns] ) + toffset − tslew(q)− t0 − |~xpmt − ~x0|/cn (6.6)

where the raw time traw depends on channel-specific time slopes gt determining the

relationship between times in ns and time ADC counts Vt, toffset is a channel-specific

time offset accounting for cable length differences and different dynode structures,

tslew(q) is a “first-order” time slewing correction depending on the amount of PMT

charge q, t0 is the mean emission time of photons from the laser flask source, ~xpmt is
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the known PMT location, ~x0 is the known laser flask location, and cn is the velocity of

light in a medium of refractive index n. For laser light, the time distribution F (te) of

light emission has a negligible time width compared to the detector time resolution,

and can be taken to be instantaneous: F (te) = δ(te − t0).

The corrected time resolution functions for the MiniBooNE PMTs cannot be

entirely extracted from laser events, since tracks in the detector produce delayed

scintillation light that cannot be simulated with the laser system, and therefore the

time distributions of light emission F (te) are different in the two cases. For particle

tracks in the detector, whose position is generally unknown prior to reconstruction,

the PMT corrected time is still described by Eq. 6.6, where t0 and ~x0 are now

parameters to be determined, referring to the track’s mean light emission time, and

track position (see Section 6.3.1).

The corrected time resolution functions assumed by the reconstruction algorithm

for three different light detection hypotheses are shown in Fig. 6.9. The examples

given refer to 50 MeV electron tracks. We mention here three important features

related to the expected corrected time distributions shown in Fig. 6.9:

PMT intrinsic time resolution : Figs. 6.9a and 6.9b, refer to PMTs that are

hit, on average, by one photoelectron due to prompt, Cherenkov, light. From

these figures, typical PMT intrinsic time resolutions of about 1.2 (1.6) ns for

R5912 (R1408) PMTs can be extracted. This reconstruction parameter is tuned

based on low intensity laser events, by measuring the spread in the PMT hit

times [143]. As discussed in Section 6.3.1, the PMT intrinsic time resolution

is important for reconstructing the light source position (laser flask or light-

emitting particle track) in the detector, and all the reconstructed parameters

that depend on the event position. Based on the velocity of light in mineral

oil, a time spread of 1 ns approximately corresponds to a 20 cm spread in the

reconstructed distance between the light source and the PMT location.
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Figure 6.9: PMT corrected time likelihood for 50 MeV electron events, as used in the

MiniBooNE reconstruction algorithms. The response function for R1408 (R5912) PMTs

is shown by the solid (dashed) histograms. Figure 6.9a shows the expected corrected time

distributions for PMTs that are hit, on average, by a single Cherenkov photon; Figure 6.9b

is the same as Fig. 6.9a, but zoomed in the −3 < tcorr (ns) < 3 time interval; Figures

6.9c and 6.9d show the corrected time distributions for PMTs that are hit, on average,

by five Cherenkov photons, and by four Cherenkov photons plus one scintillation photon,

respectively.

Time slewing and multi-PE hits : the corrected time distributions for an aver-

age of 5 PE prompt hits (Fig. 6.9c) are shifted toward earlier times and are

narrower, compared to the 1 PE prompt hits ones (Fig. 6.9a). This is due to

a combination of two effects. First, time slewing, that is the time jitter for a
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PMT signal to cross the DAQ threshold, is more pronounced for low-charge

signals [140]. Second, the MiniBooNE DAQ system records the time of the

earliest photoelectron only, even when several photoelectrons are present in a

hit. Also this second effect tends to decrease the mean time and width of the

corrected time distributions [144]. This feature is measured with laser events

as well, using different light levels and laser flask positions. Therefore, the time

likelihood tables include a “second-order” time slewing correction, not included

in the “first-order” correction applied in the corrected times definition of Eq.

6.6.

Delayed light: Figure 6.9d, referring to the corrected time distribution expected for

PMT signals due to an average of four Cherenkov photoelectrons and one scin-

tillation photoelectron, shows a long exponential tail for large corrected times,

with a typical decay time constant of the order of tens of ns. This tail is due

to the delayed light emission from scintillation processes. As the time slewing

and multi-PE effect, it is coupled to the random, Poisson statistics nature of

photon (and photoelectron) production, and to the intrinsic PMT charge res-

olution. First, there is a non-zero probability that no prompt photoelectrons

are actually created at the PMT photocathode, for an average number of four

Cherenkov photoelectrons; second, even if Cherenkov photons reach the PMT

and are converted into photoelectrons, those can give rise to PMT signals below

threshold because of non-zero charge resolution. Therefore, the PMT hit time

can be determined by the arrival time of delayed, scintillation photons only.

This aspect of the corrected time distribution is tuned based on electron events

from muon decays at rest [144]. In this context, the tail at large corrected

times is not solely due to scintillation, but also to fluorescence and scattering

processes.
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In addition to the ones described above, there are other aspects affecting the corrected

time distributions. First, higher-energy particle tracks have a light emission pattern

which is spatially more extended, and therefore a broader corrected time distribution.

This effect is taken into account by the reconstruction algorithms [144]. Second, PMT

pre-pulsing, PMT after-pulsing, and light reflections from the black-painted PMT

support structure have been observed with laser events [143], and are taken into

account in the detector Monte Carlo simulation; their impact on the reconstruction

is expected to be small, and it is neglected in the algorithms that we describe next.

6.3 Reconstruction and Particle Identification Al-

gorithms in MiniBooNE

6.3.1 Event Reconstruction

The maximum likelihood event reconstruction in MiniBooNE [144] uses the measured

charge and time PMT responses in the MiniBooNE detector to reconstruct the prop-

erties of the final state of a neutrino interaction. The algorithms used focus on the

three most important types of final state particles that can be observed with the

MiniBooNE neutrino beam: electrons, muons, and neutral pions. Electrons from

muon decays are reconstructed separately from the prompt part of the neutrino in-

teraction, since the muon decay timescale (of the order of 2 µs) is much longer than

the timescales for light production, propagation and detection in the detector (tens of

ns), which ultimately affect the particle reconstruction. The reconstruction catego-

rizes events based on the number of expected Cherenkov rings. Electrons and muons

produce a single ring of Cherenkov light in the prompt part of the event (i.e, ignoring

muon decay), while π0 → γγ decays produce two rings, one for each photon conversion

in mineral oil. Events can therefore be reconstructed both under a single ring, and a

two-ring assumption. This analysis focuses on events with a single muon in the final
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state, and therefore we discuss below the single Cherenkov ring reconstruction only.

Differences between muon and electron/photon Cherenkov rings are briefly discussed

in the Section 6.3.3, addressing particle identification. Moreover, there currently ex-

ists two independent reconstruction software packages in MiniBooNE; only the one

used in this analysis is described below.

For each event with a single Cherenkov track in the final state, the following

quantities are reconstructed:

• mean photon emission position and time along the track;

• direction of the track;

• length of the track;

• separate amounts of Cherenkov and scintillation light produced by the track;

• energy of the track.

Given the complexity of the reconstruction algorithms, not all quantities are recon-

structed at once. Rather, a step-by-step minimization approach is chosen, in which

the sophistication of the model prediction is gradually increased for better recon-

struction, and in which the results of the previous minimization step are used as

starting point. For muon reconstruction, the four minimization steps used are de-

scribed below, and summarized in Tab. 6.2. The main building blocks for the time

and charge likelihood functions are discussed in Sections 6.2.1, 6.2.2, and 6.2.3, where

the emphasis is on hit-level quantities. The reconstruction calibration for global event

quantities, such as energy or light fluxes, is discussed in Section 6.3.2.

Step 1: Track Position, Time, Direction, and Energy from Simple Time

Likelihood

First, the approximate position ~x1 and time t1 of the mid-point of the muon track

are reconstructed (4 parameters), using PMT time information only, based on two
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generic time likelihood functions for the corrected times defined in Eq. 6.6, depending

on the PMT type, i.e of type R1408 or R5912. As already mentioned, these time

likelihoods have two components: a Cherenkov component for the prompt light, and

a scintillation component for the delayed light. Second, the track direction û1 is

determined from a charge-weighted average of the directions defined by the PMT

locations with respect to the position ~x1, using only the prompt charge detected by the

PMTs that measure a non-zero charge. Third, the track energy E1 is reconstructed,

following a parametrization that depends on the total measured charge Q for the

event, and the distance of closest approach between the position ~x1 and the spherical

surface defined by the PMT locations. Fourth, the predicted Cherenkov (ρ) and

scintillation (φ) light fluxes emitted by the track are computed, assuming that both

light fluxes are directly proportional to the reconstructed energy E1.

Step 2: Track Position, Time, Direction, and Energy, from Refined Time

and Charge Likelihoods

First, the accurate position ~x2, time t2, and direction û2 of the track are recon-

structed (6 parameters), using both PMT time and charge information, based on two

combined time plus charge likelihood functions, one for each PMT type. The time

likelihoods used in this minimization step are more sophisticated than the previous

ones, and depend on the reconstructed energy E1 as well as on the amounts of charge

µ predicted by the reconstruction for each PMT, which in turn depend on the energy

(E1), and on the Cherenkov (ρ1) and scintillation (φ1) light fluxes returned by the

first reconstruction step. The dependency of the time likelihood from the predicted

charges µ and track energy E is discussed in Section 6.2.3. The charge likelihoods

introduced in this step depend on the same three quantities E1, ρ1, φ1. Unlike the

time likelihoods, which use only PMTs measuring a non-zero charge, the charge like-

lihoods use all PMTs, since the probability to measure no charge qj on a PMT given

a certain predicted amount of charge µj is a well-defined quantity that can be com-
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puted, as also discussed in Section 6.2.3. Second, using the new position ~x2, a more

accurate estimate of the energy (E2) is computed, using the same parametrization

of step 1. In this minimization step, the Cherenkov and scintillation light fluxes are

kept unchanged.

Step 3: Cherenkov and Scintillation Light Fluxes

First, new values for the predicted Cherenkov (ρ3) and scintillation (φ3) light fluxes

are computed (2 parameters), using combined time plus charge likelihood functions

similar to the ones used in step 2. In this minimization step, the midpoint track

position, time, and direction are kept fixed to the values obtained in step 2 of the

reconstruction (i.e., ~x2, t2, û2). Second, an energy estimate that is alternative to the

one computed in step 2 is obtained: the reconstructed energy E3 is based solely on the

predicted amount of Cherenkov light ρ3 in the event. The proportionality constant

Cρ between energy and Cherenkov light flux is the same as the one used in step 1.

Step 4: Track Length

The track extent (1 parameter) is estimated in this last step. Unlike the previous three

steps, the measured PMT times and charges are not assumed to be due to a point-like

Cherenkov and scintillation light source in the detector. Rather, the reconstruction

assumes the simplest generalization to an extended track, that is two point-like sources

of light, each having half the Cherenkov and scintillation flux strength previously

computed. The two sources are assumed to be distributed along the track direction,

and equally spaced with respect to the track midpoint. This “symmetry” assumption

is motivated by the nearly uniform light emission along the muon track due to both

the Cherenkov and scintillation light processes. As shown in Fig. 6.5, this is a

reasonable approximation for the part of the muon track above pµ =200 MeV/c. A

discrete light emission model based on two point-like sources is assumed (as opposed
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to a continuous light model), to keep the CPU time requirements of the reconstruction

algorithm at a manageable level. As for steps 2 and 3, combined time plus charge

likelihoods are used in step 4. For the purposes of estimating the track length, the

midpoint track position, time, and direction are assumed to be the ones computed in

step 2 (~x2, t2, û2), while the Cherenkov light flux, scintillation light flux, and track

energy are fixed to the values computed in step 3 (ρ3, φ3, E3).

6.3.2 Reconstruction-Level Detector Calibration and Valida-

tion

We now briefly discuss the calibration and validation of global quantities related to

the MiniBooNE events.

The accuracy of the light source position reconstruction can be validated with

laser events, since the position of the laser flasks is known; typical accuracies of the

order of 20 cm are obtained [145].

The accuracy of the track direction reconstruction can be validated with cosmic

ray muons passing through the muon tracker, whose direction is known. Directional

accuracies of the order of 3 deg are obtained [133].

The track length reconstruction can be calibrated and its accuracy validated with

cosmic ray muons passing through the muon tracker and stopping in a scintillation

cube, whose track length in the detector is known. The reconstructed length tends to

be reconstructed to lower values compared to the actual track length, for track lengths

exceeding about 2 m. This bias is due to the two-point light source approximation

used in determining the track length, which becomes less and less valid as the track

length increases, and therefore it is understood. Correcting for this bias, typical

accuracies of the order of 10% are obtained [134].

The energy reconstruction is calibrated with electrons from muon decays at rest,

whose energy distribution is known, characterized by an endpoint energy of 52.3
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MeV. More specifically, this sample is used to determine the functional form for the

charge-to-energy conversion E = E(Q,~x) appearing in Tab. 6.2. Moreover, the

accuracy of the energy reconstruction can be validated with electron, muon, and

neutral pion events. First, the energy resolution obtained for electron events from

muon decays at rest at the decay endpoint of 52.3 MeV is about 13% [141]. Second,

the energy resolution for cosmic ray muons stopping in scintillation cubes is of the

order of 10% [134]. Few percent corrections, based on Monte Carlo studies of electron

neutrino and muon neutrino charged current, quasi-elastic events, can also be applied,

slightly improving the electron and muon energy reconstruction accuracy [146]. Third,

neutral pion invariant mass obtained from the opening angle and energy of the two

measured decay photons provides another cross-check on the detector energy scale;

typical reconstructed invariant masses are in good agreement with the well-known π0

mass value [147]. The neutrino energy can be estimated in charged-current, quasi-

elastic interactions from the energy and direction of the outgoing charged lepton.

The expected neutrino energy reconstruction accuracy as obtained from Monte Carlo

studies is described in Chapter 7, discussing muon neutrino charged-current, quasi-

elastic interactions in MiniBooNE.

Finally, the calibration constants relating the Cherenkov and scintillation light

fluxes to energy, that is the constants Cρ and Cφ appearing in Tab. 6.2, are obtained

from electrons from muon decays at rest [141].

6.3.3 Particle Identification

Particle identification in MiniBooNE aims at distinguishing events with a muon, elec-

tron, or a neutral pion in the final state. Qualitatively, muon events are characterized

by single, long tracks slowing down and brought to rest in the detector because of

ionization energy loss, with little scattering along the path. Electron events are

characterized by single, shorter tracks, whose development is affected by electron
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bremsstrahlung and ionization, and by photon pair production and Compton scatter-

ing, since typical electron energies (tens to few hundreds of MeV) are of the order of

the electron critical energy in mineral oil (' 110 MeV [60]). Therefore, in the Mini-

BooNE energy regime, electrons do not behave neither as minimum ionizing particles,

nor as electromagnetic showers, but rather as something in between. The result is

that the Cherenkov light ring emitted by electrons is not as filled in as for muon

tracks (because of the shorter track lengths), and with a fuzzier ring profile (because

of its partially “shower-like” properties). Neutral pion events are characterized by two

electron-like Cherenkov rings, from the conversion of the two photons from π0 → γγ

decays.

For example, electron/muon separation is accomplished using [148]:

• the number of decay electrons in the event;

• functions depending on reconstructed physical observables, for example the ratio

of track length to energy;

• charge related quantities, possibly functions of both the reconstructed and pre-

dicted PMT charges, or depending only on PMT reconstructed charges, as a

function of various topological variables. A first example involving only recon-

structed charges is the distribution of charge as a function of the angle between

the track direction and the direction defined by the PMT locations with re-

spect to the track midpoint; muon-like tracks are more extended, and tend to

have broader distributions in this angular variable. A second example is the

distribution of charge per unit track length along the track, assuming that all

photons are emitted at an angle equal to the Cherenkov angle with respect to

the track direction; muon-like tracks, with a nearly uniform light production

per unit track length and sharply-defined Cherenkov rings, tend to have a nar-

row distribution in this quantity. One example using both reconstructed and

predicted charges is the value of the charge likelihood Lq appearing in Tab. 6.2;
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• distributions related to PMT corrected times, such as the time likelihood Lt

appearing in Tab. 6.2, possibly as a function of the same topological variables

discussed above;

• distributions related to both PMT charges and times, possibly as a function of

the same topological variables discussed above.

Several variants on these quantities are used, and the distributions predicted by the

reconstruction algorithms under various reconstruction assumptions, are exploited.

The goal of this analysis is to study νµn → µ−p interactions. As discussed in

Chapter 7, the main background to this analysis are muon neutrino, charged-current

interactions where a single pion is also produced. Both event topologies have (at

least) one muon in the final state and no prompt electrons. As it will be explained

in detail later, similar tools to the ones listed above for electron/muon separation are

used in this case, but tailored to the different signal/background event classification.
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Chapter 7

Muon Neutrino Charged-current,

Quasi-Elastic Interactions in

MiniBooNE

We have discussed the general principles of how to measure neutrino interactions in

the MiniBooNE detector. We can now apply these principles to identify the type of

neutrino interaction that is most useful for the νµ disappearance analysis, and there-

fore for searching for sterile neutrinos in MiniBooNE: muon neutrino charged-current,

quasi-elastic (CCQE) interaction.

The reason why νµ CCQE interactions are particularly valuable for a νµ disap-

pearance analysis is two-fold. First, neutrino-energy dependent distortions due to

oscillations are best measured if the neutrino energy itself can be estimated from

the MiniBooNE observables. From the 2-body kinematics in the CCQE reaction

νµn → µ−p, the neutrino energy can be determined by measuring the muon energy

Eµ and the muon angle with respect to the neutrino beam direction θµ. In this

case, the only intrinsic smearing effect (in addition to the reconstruction smearing)

in the neutrino energy determination is introduced by the motion of the target neu-

175
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tron within the nucleus, which can be described by a Fermi gas model with Fermi

momentum of pF = 220 MeV/c. By correcting for the average neutron momentum

and binding energy EB = 25 MeV, a neutrino energy determination free of biases

and with good resolution can be achieved. Second, a single detector νµ disappearance

measurement relies on knowing the neutrino flux and cross-section from external pre-

dictions. From this point of view, the best-known neutrino process in the '1 GeV

energy range is the CCQE interaction.

In principle, a CCQE interaction is strictly defined as the two-body interaction

process νµn → µ−p. In practice, as discussed in Section 5.3.3, an irreducible back-

ground in a CCQE-enriched sample is present, due to events where a pion is pro-

duced in the interaction, and then absorbed in the nuclear environment. Although

the interaction-level kinematics is different from the CCQE one, this event category

appears, from the experimental point of view, as a CCQE two-body interaction. In

the following, we adopt the same definition of Chapter 5 to distinguish νµn → µ−p

interactions (CCQE events), from the broader category of CCQElike events. In par-

ticular, CCQElike interactions are defined as having only leptons, nucleons, or < 0.1

GeV photons in the final state.

7.1 Description of the Event Selection and Neu-

trino Energy Reconstruction

The νµ CCQE event selection in MiniBooNE relies on three types of cuts applied at

various levels of the reconstruction, listed here in increasing order of complexity: basic

hit information, event reconstruction, and event type selection. The hit-level and

reconstruction-level selection is discussed in Section 7.1.1, the event-level selection is

presented in Section 7.1.2. Section 7.1.3 describes how the neutrino energy is inferred

from this resulting CCQE-enriched sample.
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7.1.1 Hit-Level and Reconstruction-Level Selection

At the basic-hit level, veto hit multiplicity, tank hit multiplicity, and tank hit time

cuts are used to reject mostly cosmic ray-induced events with significant veto activity,

uncontained neutrino-induced events, neutral current neutrino elastic scatters, and

events with more than one muon decay in the final state. The hit-level cuts are applied

on the number of subevents within a MiniBooNE neutrino event, as well as on the hit

properties of the first subevent. As mentioned in Chapter 3, a subevent is defined as

a collection of PMT hits clustered in time. The main motivation for introducing the

concept of subevents is to separate the light emitted by the charged tracks produced in

the initial neutrino interaction, from the light produced by the Michel electrons from

muon decays at rest. The reason is that the timescale for a muon to decay, set by the

muon lifetime of τ ' 2 µs, is much longer than the timescale for photon production,

propagation, and detection in the MiniBooNE detector, which are of the order of

' 10 ns. Therefore, it is possible to apply reconstruction algorithms individually to

these two, well separated in time, neutrino-induced sources of light. Specifically, the

algorithm used to associate hits to a subevent in MiniBooNE requires that there be

at least ten hits per subevent (corresponding to an energy of about 4 MeV), and such

that no two consecutive PMT hits in the subevent are separated by more than 10 ns.

Figure 7.1 shows how the splitting of PMT hits into subevents works in practice, for

a typical 2 subevent, CCQE candidate event observed in MiniBooNE.

Having defined what subevent means in MiniBooNE, we can now list the hit-level

requirements for the CCQE event selection:

1. NSubEvent > 0: at least one subevent;

2. NVeto < 6: less than 6 PMT hits in the veto region associated with the first

subevent;

3. NTank > 100: more than 100 PMT hits in the main tank region for the first



178

1

10

10 2

0 5000 10000 15000 20000

PMT Hit Times (ns)

E
nt

ri
es

 / 
(2

00
 n

s)

a)

1

10

10 2

5000 5500 6000 6500 7000

PMT Hit Times (ns)

E
nt

ri
es

 / 
(2

0 
ns

)

b)
�

Figure 7.1: Measured PMT hit times distribution for a typical CCQE candidate event in

MiniBooNE, and subevent selection. The left-leaning (right-leaning) hatches show the PMT

hit times associated with the first (second) subevent, and the non-hatched histogram show

all PMT hit times for the event. Figures 7.1a) and b) show the hit time distribution over

the full 19.2 µs data acquisition time window and over 2 µs, respectively.

subevent;

4. 4.4 < TTank (µs) < 6.4: the time of PMT hits averaged over all first subevent

hits is consistent with the time expected for beam-induced neutrino interactions,

corresponding to roughly 4.6 < TTank (µs) < 6.2;

5. NSubEvent < 3: no more than two subevents are present in the event.

The reconstruction algorithms summarized in the previous Chapter are then applied

to the first subevent. At the event-reconstruction level, successful reconstruction of

the event (vertex, time, visible energy, relative fractions of Cherenkov and scintil-

lation light, and event spatial extent) is required, and a fiducial volume cut on the

reconstructed fitted Cherenkov track in the first subevent is applied. Specifically,

the fiducial volume cut is applied on the radial position of the reconstructed mean

light emission point, roughly corresponding to the mid-point of the muon produced in

CCQE interactions, which is required to be within 500 cm from the detector center.
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The two reconstruction-level requirements listed above are referred in the following

as NRec > 0 and Rµ <500 cm, respectively. The reconstruction cuts are used to reject

uncontained and/or poorly-reconstructed neutrino-induced interactions, as in these

cases the energy of the neutrino inducing the event cannot be reliably reconstructed.

7.1.2 Fisher Discriminant Method and Event-Level Selec-

tion

The selection at the event-type level relies on a Fisher discriminant method to isolate

events with a single, muon-like Cherenkov ring in the final state and scintillation

light production consistent with a νµp → µ−n interaction. We start by describing the

linear discriminant method introduced by Fisher, and will then proceed to apply it

in order to isolate CCQE interactions in MiniBooNE.

The Fisher discriminant method is used to construct the linear combination

among a set of variables ~x = x1, . . . , xn with the best discriminating power between

two populations. In our case, we aim to discriminate between CCQE and non-CCQE

interactions in MiniBooNE, and the variables used to form the most effective lin-

ear combination are n = 10 observables related to particle and event identification

properties. Specifically, the Fisher linear discriminant method chooses the coefficients

~a = a1, . . . , an in the linear combination:

t(~x) =
n∑
i

aixi = ~aT~x (7.1)

such that the following measure of separation between two populations H0 ≡ HCCQE,

H1 ≡ HCCQE is the largest:

J(~a) =
(τ0 − τ1)

2

Σ2
0 + Σ2

1

(7.2)
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where the means τk and variances Σ2
k of the linear combination of the two populations

k = 0, 1 are given by:

τk =

∫
d~x t(~x)f(~x|Hk) (7.3)

Σ2
k =

∫
d~x (t(~x)− τk)

2f(~x|Hk) (7.4)

where the 2n functions f(~x|Hk) are probability density functions:
∫

d~x f(~x|Hk) ≡ 1.

With this definition for the measure of separation between two populations, the best

choice of the coefficients ~a in the Fisher variable t(~x) is the one given by the solution

to the following set of n linear equations:

∂J

∂ai

= 0, i = 1, . . . , n (7.5)

The ten observables used as inputs to the CCQE Fisher algorithm are related

to the coarse and fine hit timing structure, and to the spatial topology of the light

emission. These ten quantities are chosen empirically, via Monte Carlo studies, in

order to obtain maximum separation between CCQE and non-CCQE interactions.

The variables are described below, together with the physics motivation for their

CCQE / non-CCQE interaction discriminating power:

• NSubEvent: in addition to the 0 <NSubEVent< 3 hit-level cut, the discrete

variable NSubEvent = 1, 2 is used as one of the Fisher inputs. The reason is

that most CCQE events have 2 subevents due to the Michel decay of the µ−

produced by the CC νµ interaction, while a significant part of non-CCQE events

passing the hit-level and reconstruction-level cuts are neutral-current, resonant

π0 production interactions (νµN → νµNπ0) which generally reconstruct as 1

subevent events;

• VeryPromptHitsFraction and VeryLateHitsFraction: variables measuring

the amount of very prompt, Cherenkov-induced light, and very late, scintillation-

induced light in the first subevent, respectively. Charged-current, quasi-elastic
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and non-CCQE events generally have different relative contributions of light

production from Cherenkov and scintillation processes, because of the different

final states of the interactions. For example, background due to neutral current,

elastic neutrino interactions (νµN → νµN) generally has a large value of very

late light fraction compared to CCQE events, since most of light produced in

this case is due to delayed, scintillation light;

• TransverseHitsFraction, BackwardHitsFraction, RingSharpness,

RingChargeRatio1, RingChargeRatio2: these five variables are related to the

detailed spatial hit and charge topology of the event, and measure both the

amount of hits and charge contained in the fitted Cherenkov ring under the

single ring hypothesis per event used by the reconstruction algorithms, and the

level of ring sharpness. For example, the RingChargeRatio1 variable is the

fraction of how much charge is contained in the single Cherenkov ring assump-

tion, compared to the total amount of charge in the event. This quantity is

expected to be close to unity for CCQE events, since the light produced by the

recoil proton in the interaction is generally small. On the other hand, other

event types such as νµp → µ−pπ+ are expected to have, on average, a smaller

value for this quantity;

• TrackDifference: this quantity measures the difference between a Cherenkov-

based and a calorimetric-based estimate of the muon track length in the event.

The Cherenkov-based estimate uses the muon track extent obtained from the

Cherenkov ring fitting algorithm, while the calorimetric estimate uses the total

visible energy in the event divided by the energy loss per unit track length

for a minimum-ionizing particle in oil. The difference tends to be larger for

CCQE events than for non-CCQE events, since a long, energetic muon track is

generally present in CCQE events;
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Figure 7.2: Predicted distributions for the ten variables used as inputs to the Fisher discrim-

inant method to identify CCQE interactions. The solid (dashed) distribution refer to CCQE

(non-CCQE) interactions passing the hit-level and reconstruction-level cuts. The arrows on

top (bottom) show the locations of the means of the CCQE (non-CCQE) distributions.

• EmuANNOutput: output of an artificial neural network discriminant, constructed

to separate νµ CCQE events from νe CCQE events. The output is normalized

between zero and one, so that output values close to zero refer to νµ CCQElike

events. Because of the MiniBooNE neutrino flux flavor composition, νe interac-

tions do not constitute a significant background to νµ CCQE events; however,

the particle ID variables used in this network are also effective in distinguishing

νµ CCQE from νµ non-CCQE events. The fifteen particle identification variables

used by the network are also related to detailed properties of the time and spa-

tial distribution of hits and charge in the detector. For example, νµN → νµNπ0

events tend to look more νe CCQElike than νµ CCQE-like according to the out-

put of this neural network, since the decay π0 → γγ produces two electron-like

Cherenkov rings, as opposed to muon-like rings.

Figure 7.2 shows the distributions for the ten observables used in the event-level selec-

tion, for all CCQE and all non-CCQE events passing the hit-level and reconstruction-
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Figure 7.3: Predicted distributions of the Fisher variable numuCCQElike for CCQE (solid)

and non-CCQE (dashed) neutrino interactions in MiniBooNE, for events passing hit-level

and reconstruction-level cuts.

level selection. The CCQE and non-CCQE distributions for the linear combination

of these variables that allow for the best discriminating power between CCQE and

non-CCQE (as defined in the Fisher method) is given in Fig. 7.3. This linear combi-

nation is called numuCCQElike in the following.

In Section 7.2, we discuss the results of Monte Carlo studies meant to address the

performance of the CCQE event selection. The figures of merit are: overall efficiency

in selecting CCQE events, CCQE purity of the selected events, energy-dependence of

the CCQE efficiency and purity, and resolution in reconstructing the neutrino energy.

We first describe the procedure used to reconstruct the neutrino energy.

7.1.3 Description of the Neutrino Energy Reconstruction

Method

The reconstructed neutrino energy EQE
ν in a CCQE interaction is obtained from the

reconstructed muon energy Eµ and angle θµ between the muon and the neutrino
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direction, via:

EQE
ν =

1

2

2(M − EB)Eµ + (2MEB −m2
µ + E2

B)

(M − EB)− Eµ +
√

E2
µ −m2

µ cos θµ

(7.6)

where M is the nucleon mass, mµ the muon mass, and EB is the (positive) binding

energy.

In practice, biases and smearing effects due to the non-perfect reconstruction in

the muon energy Eµ, direction θµ, and due to the target nucleon motion, affect the

neutrino energy reconstruction. Therefore, a 4-step, empirical calibration based on

simulated data is applied to mitigate these effects [146]. The starting point of the

neutrino energy calibration procedure are the track energy and direction extracted

by the second step in the event reconstruction algorithm described in Chapter 6:

Step 1: a first-order correction to the reconstructed track energy Evis ≡ Tµ,0 is ap-

plied to obtain the reconstructed muon kinetic energy Tµ,1. The two calibration

parameters are obtained from simulated data, by fitting the profile histogram

T gen
µ versus Tµ,0, where T gen

µ is the generated muon kinetic energy;

Step 2: use Eq.7.6 to compute the reconstructed neutrino energy, with Eµ in Eq.7.6

given by Tµ,1 + mµ, and cos θµ is the uncorrected value given by the recon-

struction algorithm. Based on this neutrino energy estimate EQE
ν,2 , the four-

momentum transfer to the lepton in the interaction is computed, via:

Q2 = 2EQE
ν Eµ(1− βµ cos θµ)−m2

µ (7.7)

where βµ = |~pµ|/Eµ;

Step 3: apply a Q2-dependent, third-order correction to the neutrino energy EQE
ν,2 .

The corrected neutrino energy EQE
ν,3 is obtained by fitting the profile histogram

(EQE
ν,2 − Egen

ν ) versus Q2;

Step 4: finally, a second-order correction to EQE
ν,3 is applied to obtain the final neu-

trino energy EQE
ν,4 ≡ EQE

ν , from a (Eν,3 − Egen
ν ) versus Egen

ν profile histogram.
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Cut Number of Events ε relative ε

Event Type All CCQE CCQE All CCQE CCQE All CCQE CCQE

none 400,000 158,261 241,739 1.00 1.00 1.00 1.00 1.00 1.00

NSubEvent > 0 364,153 151,366 212,787 0.91 0.96 0.88 0.91 0.96 0.88

NVeto < 6 224,253 83,997 140,256 0.56 0.53 0.58 0.62 0.55 0.66

NTank > 100 170,859 79,230 91,629 0.43 0.50 0.38 0.76 0.94 0.65

4.4 < TTank(µs) <6.4 170,759 79,158 91,601 0.43 0.50 0.38 1.00 1.00 1.00

NSubEvent < 3 139,066 75,048 64,018 0.35 0.47 0.26 0.81 0.95 0.70

NRec > 0 138,896 74,956 63,940 0.35 0.47 0.26 1.00 1.00 1.00

Rµ < 500 cm 114,589 62,208 52,381 0.29 0.39 0.22 0.82 0.83 0.82

numuCCQElike> 0.14 47,605 38,946 8,659 0.12 0.25 0.04 0.42 0.63 0.17

Table 7.1: Predicted effect of the individual and combined CCQE selection cuts on all

neutrino interactions in the 6.1 m radius spherical MiniBooNE detector, and on CCQE

and non-CCQE interactions separately. The number of simulated events are given, as well

as the combined cut efficiencies (ε) and the individual cut efficiencies (relative ε).

The data sample used in this energy calibration procedure is given by simulated

CCQE interactions passing the hit-level and reconstruction-level cuts described in the

previous Section. Once calibration constants are obtained, the same energy correction

procedure is applied to actual data. The expected performance of the MiniBooNE

neutrino energy reconstruction is presented in Section 7.2. In Section 7.3, electron

and muon calibration samples are used to compare the energy reconstruction in real

and simulated data, in order to validate the corrections to the energy reconstruction

obtained from simulated data.
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7.2 Predicted Event Selection and Neutrino En-

ergy Reconstruction Performance

7.2.1 Efficiency and Purity in Selecting CCQE Interactions

Table 7.1 summarizes the predicted performance of the CCQE event selection in

terms of overall CCQE efficiency and purity. The effect of each of the hit-level,

reconstruction-level, and event-level cuts on the expected CCQE efficiency and purity

is given sequentially for each cut. The efficiency numbers assume neutrino interac-

tions of all types generated uniformly within the full detector radius of 610 cm, in

order to quantify the effects associated with the muon track length, veto inefficiency,

and resolution in the neutrino interaction vertex. Given this convention, most of the

low (39%) CCQE efficiency of the simple hit-level and reconstruction-level cuts is due

to neutrino interactions outside the fiducial volume, Rν & 500 cm. Ignoring the muon

path length and assuming a perfect detector, one would expect a (500/610)3 ' 55%

efficiency associated with the fiducial volume cut alone. More quantitatively, this

is shown in Tab. 7.1 by the low relative efficiencies associated with the veto hit

multiplicity, main tank hit multiplicity, and fiducial volume cuts. Moreover, no in-

efficiencies due to cosmic ray events in the detector are considered in Tab. 7.1; the

impact of cosmic ray events on the CCQE event selection is discussed in Chapter 8.

Adding the event-level Fisher cut numuCCQElike> 0.14 is expected to increase the

CCQE purity of the sample from 54% to 82%, at the cost of reducing the absolute

CCQE efficiency from 39% to 25%. The CCQE purity is defined as the number of

CCQE events in the selected sample, divided by the total number of selected events.

The efficiency εFisher of the cut numuCCQElike>numuCCQElikemin as a function

of the cut position numuCCQElikemin is shown in Fig. 7.4, together with the cor-

responding CCQE purity, ηCCQE. The CCQE purity increases roughly linearly by

increasing the value of the cut position numuCCQElikemin, but the efficiency drops
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Figure 7.4: Figure 7.4a) shows the predicted efficiency of the Fisher CCQE cut alone, as a

function of the minimum Fisher variable value numuCCQElikemin, for CCQE interactions

passing hit-level and reconstruction-level cuts. Filled points in Fig. 7.4b) show the predicted

CCQE purity for all events passing a numuCCQElike> numuCCQElikemin event-level cut, as

a function of numuCCQElikemin; empty points in Fig. 7.4b) show the CCQElike purity, as

defined in the text.

very quickly for values numuCCQElikemin > 0.14. For all cut values, the CCQElike

purity is higher than the CCQE purity, given the more inclusive definition of the

former category. The impact of the cut value numuCCQElikemin on the muon neutrino

disappearance analysis presented in Chapter 8 has been studied, and showed that

a value numuCCQElikemin ' 0.14 optimizes the sensitivity to neutrino oscillations.

Figure 7.4b) attempts also to give a measure of the level of irreducible background

associated with the CCQE event selection, by showing the CCQElike purity. As pre-

viously discussed, a significant fraction of non-CCQE neutrino interactions appear

as CCQE interactions because of final state interactions within the target nucleus.

From Fig. 7.4b), we expect a 88% CCQElike purity in the sample by applying a

numuCCQElike> 0.14 cut.

Table 7.2 shows what are the most important backgrounds that are predicted to
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Reaction CCQE CCQElike

Contribution (%) Contribution (%)

νµp → µ−pπ+ 56.9 44.1

νµn → µ−pπ0 13.9 16.4

νµn → µ−nπ+ 12.3 13.4

νµA → µ−π+A 8.0 3.9

νµn → µ−p 0 15.5

other 8.9 6.7

Table 7.2: Predicted backgrounds in the CCQE-enriched sample, given in terms of fractional

contributions to the total background. The fractions for two different background definitions

are given here: non-CCQE events, and non-CCQElike events (see text for definitions).

be present in the CCQE sample. Two different background definitions are given in

Tab. 7.2: non-CCQE background, that is all neutrino interactions that are not of the

type νµn → µ−p, and non-CCQElike background, as defined above. The dominant

contamination in the CCQE sample is due to νµp → µ−pπ+ events, according to both

definitions.

Having discussed the overall efficiency and purity expected in the CCQE sample,

we now turn to the third and fourth figures of merit mentioned in Section 7.1.2, that

is the energy dependence of these quantities. A selection efficiency that is steeply

varying with neutrino energy should be avoided, since even small deviations from its

proper characterization may cause significant distortions in the predicted neutrino

energy spectrum, possibly mimicking the effect of a neutrino oscillation signal. Simi-

larly, a CCQE purity that varies relatively mildly with neutrino energy is desirable,

such that imprecise characterizations of the overall non-CCQE background contami-

nation would not result in gross systematic effects on the energy distribution shape.

Figure 7.5 shows the hit-level and reconstruction-level efficiency εhitεrec, the

event-level efficiency εFisher, and the combined hit-level, reconstruction-level, and

event-level efficiency εCCQE ≡ εhitεrecεFisher as a function of generated neutrino en-

ergy, Egen
ν . The CCQE and CCQElike purities of the numuCCQElike> 0.14 sample
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Figure 7.5: Predicted performance of CCQE event selection in MiniBooNE, as a func-

tion of true neutrino energy Egen
ν . Figure 7.5a) shows the efficiency of the hit-level and

reconstruction-level cuts, Fig. 7.5b) the efficiency of the Fisher cut for events passing the

hit-level and reconstruction-level cuts, and Fig. 7.5c) the efficiency of the the hit-level cuts,

reconstruction-level cuts, and Fisher cut combined, for CCQE interactions in the 6.1 m

detector radius. Figure 7.5d) shows the CCQE (solid points) and CCQElike (empty points)

purity as a function of Egen
ν .

as a function of Egen
ν are also given in Fig. 7.5. The efficiencies show a broad peak

where the bulk of CCQE interactions are expected, for 0.3 < Egen
ν (GeV ) < 1.5. The

dashed line in Figs. 7.5a) and c) show the ideal efficiency case discussed above, for

(500/610)3 ' 0.55. The drop at low energies is mostly due to the main tank hit
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Figure 7.6: Predicted performance of CCQE event selection in MiniBooNE, as a function

of reconstructed neutrino energy EQE
ν . Figure 7.6a) shows the Fisher cut efficiency for

CCQE interactions, as a function of EQE
ν ; Fig. 7.6b) shows the CCQE (solid points) and

CCQElike (empty points) purity as a function of EQE
ν .

multiplicity requirement, while the drop at high energies is mostly due to the veto hit

multiplicity and fiducial volume requirements. The CCQE purity drop with Egen
ν is

mostly due to the increasing non-CCQE contribution to the inclusive neutrino cross-

section with energy, as discussed in Chapter 5.

Complementary information on efficiency and purity as a function of energy to

the one given in Fig. 7.5 is displayed in Fig. 7.6, where the Fisher cut efficiency

and the purity as a function of reconstructed neutrino energy, EQE
ν , are shown 1. The

efficiency curve does not show large differences compared to the efficiency curve in

terms of Egen
ν , while the CCQE purity is expected to be less dependent on EQE

ν than

on Egen
ν . The reason is that a significant fraction of high-energy, non-CCQE events

are expected to be interpreted, after reconstruction, as lower energy events.

1Of course, it is meaningless to define a hit-level and reconstruction-level cut efficiency in terms of

reconstructed quantities, since successful reconstruction is a requirement in the reconstruction-level

selection.
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Figure 7.7: Predicted neutrino energy reconstruction performance for CCQE events. Fig.

7.7a) shows the neutrino energy resolution ∆E (see text) as a function of reconstructed

neutrino energy EQE
ν for all events passing the CCQE selection, and Fig. 7.7b) compares the

corresponding true neutrino energy (solid line) and reconstructed neutrino energy (dashed

line) distributions. Figures 7.7c) and d) are equivalent to Fig. 7.7a) and b), but for true

CCQE events only passing the CCQE cuts (that is, with no non-CCQE contamination).

7.2.2 Neutrino Energy Reconstruction

Finally, we address the neutrino energy reconstruction performance, for CCQE can-

didate events in MiniBooNE. As far as the neutrino oscillation search is concerned,

the better the neutrino resolution is, the more accurately the neutrino mass splitting

parameter ∆m2 can be measured in the presence of an oscillation signal, and the

stricter the constraint in the (sin2 2θ, ∆m2) parameter space is for the no oscillations
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case. Therefore, the neutrino energy resolution is an important figure of merit of the

CCQE event selection. We define the energy bias ∆E and resolution δ∆E as:

∆E = Mean[Egen
ν − EQE

ν ] (7.8)

δ∆E = RMS[Egen
ν − EQE

ν ] (7.9)

The bias and resolution ∆E ≡ ∆E ± δ∆E are shown in Fig. 7.7 as a function of EQE
ν ,

both for all events expected to pass the CCQE selection, and ideally by retaining

only the CCQE events in the sample. Figure 7.7 also shows the expected true and

reconstructed neutrino energy distributions, given the predicted neutrino energy re-

construction performance. The bias and resolution are made significantly worse by

the non-CCQE contribution in the sample. While the bias does not necessarily affect

the νµ disappearance sensitivity of the experiment, the resolution is expected to have

an effect in the high ∆m2 oscillation parameter reach.

In order to quantify the overall neutrino energy reconstruction performance, we

quote the fractional energy resolution averaged over the expected EQE
ν spectrum:

• All CCQE candidate events: 〈δ∆E〉/〈E〉= 29.9%

• Only CCQE events among CCQE candidate events: 〈δ∆E〉/〈E〉= 11.4%

7.3 Validation of the Event Selection and Energy

Reconstruction with MiniBooNE Data

In the previous Section, we discussed the expected performance of the CCQE event

selection, based on Monte Carlo simulations. In this Section we compare the event

selection variables and energy distributions between simulated and real data for a va-

riety of data sets. The purpose is to quantify the level of agreement between the actual

and predicted detector response, and thereby validate the CCQE event selection and
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energy reconstruction. We show that most quantities are in good agreement between

data and Monte Carlo predictions. Quantities which require further investigation are

noted.

7.3.1 Calibration Samples

The first sample we consider is the electron calibration sample, comprising electrons

from muons decaying at rest. Large differences in the output of the event selection

variables are to be expected between muons from neutrino-induced CCQE interac-

tions and Michel electrons, most importantly because of the different particles and

energies involved in the two samples. Nevertheless, quantifying the agreement be-

tween data and Monte Carlo in the CCQE event selection variables and energy using

Michel electrons is useful: Michel electrons test the Monte Carlo description of the

detector optical model, and the performance of the reconstruction and particle ID

algorithms, but do not depend on the neutrino flux and cross-section assumptions.

Figure 7.8 shows the data and Monte Carlo distributions in the reconstructed

visible energy and numuCCQElike variables, for Michel electrons. Both simulated and

real samples of electrons are obtained here by the decay of muons induced by neutrino

interactions, with a Rµ < 500 cm fiducial volume requirement on the decaying muon.

Moreover, a tank PMT hit multiplicity requirement NTank>50 is imposed on the elec-

tron subevent, in order to select electrons that can be reliably reconstructed. We find

reasonable agreement in the energy and numuCCQElike Fisher variable distributions,

between simulated and actual Michel electrons.

Figure 7.9 shows nine of the ten event selection quantities whose linear combina-

tion forms the numuCCQElike variable, for Michel electrons (the NSubevents distri-

bution is not shown because NSubevents=2 is imposed by the Michel selection). The

data and Monte Carlo distributions are in agreement in most cases. One exception

is given by the distribution in the BackwardHitsFraction variable, describing the
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Figure 7.8: Validation of CCQE event selection using the electron calibration sample. Fig-

ure 7.8a) shows the measured (data points) and predicted (histogram) reconstructed visible

energy Evis in the detector. Figure 7.8b) shows the measured (data points) and predicted

(histogram) CCQE Fisher variable distribution for the same sample.

fraction of prompt PMT hits that are located in the backward direction with respect

to the reconstructed Cherenkov track direction.

The CCQE event selection and energy reconstruction validations have also been

studied via a muon calibration sample, comprising cosmic ray muons passing through

the muon tracker and stopping in the deepest scintillation cube. As discussed in

Chapter 6, there are seven cubes in the MiniBooNE detector, each corresponding

to a different muon range in the tank, and therefore to a different visible energy,

up to about 800 MeV. The muon calibration sample studies events that have more

resemblance to neutrino-induced CCQE events than the electron calibration sample

events, since it consists of single muons (and not electrons) with visible energies in

the range of interest for the νµ CCQE analysis. No recoil protons are present in this

sample, as opposed to CCQE events. As for Michel electrons, cube muons test the

Monte Carlo description of the detector optical model, and the performance of the

reconstruction and particle ID algorithms, but do not depend on the neutrino flux

and cross-section assumptions. The Monte Carlo sample is obtained by generating
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Figure 7.9: Validation of CCQE event selection using the electron calibration sample. The

nine panels show the measured (data points) and predicted (histograms) distributions for the

variables used as inputs to the CCQE Fisher discriminant method.

negative muons above the tracker, pointed at the cubes, with a tight range of energies

so that a few percent of the muons actually hit the cubes and stop in them. For this

study, only the deepest cube is used, by requiring a muon visible energy of at least

600 MeV; this requirement is imposed in order to consider muon tracks that are well

within the tank fiducial volume for most of the track extent, since mostly muons of

this type pass the CCQE selection cuts for neutrino-induced events.

Fig. 7.10 shows the data and Monte Carlo distributions in the visible energy Evis

and numuCCQElike variables, for cosmic ray muons stopping in the deepest cube.
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Figure 7.10: Validation of CCQE event selection using the muon calibration sample. Figure

7.10a) shows the predicted (histogram) and measured (data points) distributions for the

visible energy in MiniBooNE for Evis > 600 MeV, while Fig. 7.10b) shows the two CCQE

Fisher variable distributions.

The agreement between data and Monte Carlo in the numuCCQElike distribution is

reasonable, while the visible energy comparison is less impressive, and will need to be

addressed in the future.

Fig. 7.11 shows nine of the ten event selection quantities whose linear combina-

tion forms the numuCCQElike variable, for cubes muons (the NSubevents distribution

is not shown because NSubevents=2 is imposed by the cubes selection). Also in this

case, the data and Monte Carlo distributions are in reasonable agreement.

7.3.2 The CCQE Sample

The third and final sample considered to validate the CCQE event selection is the

CCQE candidate events sample itself. This analysis uses neutrino data collected be-

tween December, 2002, and January, 2005 (runs 3,000 to 10,493). Overall, 55,824

CCQE candidate events were collected with the event selection described above, over
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Figure 7.11: Validation of CCQE event selection using the muon calibration sample. The

nine panels show the measured (data points) and predicted (histograms) distributions for the

variables used as inputs to the CCQE Fisher discriminant method.

this time period 2. In addition to the hit-level, reconstruction-level, and event-level

cuts, other data-quality criteria are applied: the detector and beam datastreams are

both required to exist and to be successfully merged in time, detector data is required

to be not latent, and the MiniBooNE horn is required to have pulsed at full current,

in coincidence with the proton beam spill on target.

The ten Fisher input variables are displayed in Fig. 7.12, while Fig. 7.13 shows

2This datastream has a prescale factor of 2, so that twice as many CCQE candidate events would

be present without prescaling.
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Figure 7.12: Validation of CCQE event selection using CCQE candidate events in Mini-

BooNE (numuCCQElike>0.14). The ten panels show the measured (data points) and pre-

dicted (histograms) distributions for the variables used as inputs to the CCQE Fisher dis-

criminant method. The filled histograms show the expected CCQE contributions.

the data and Monte Carlo numuCCQElike distributions. The filled histograms in

Figs. 7.12 and 7.13 show the expected contributions from CCQE events in the

sample. In general, the level of agreement is satisfactory, with the exception of
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Figure 7.13: Validation of CCQE event selection using CCQE candidate events in Mini-

BooNE. The Figure shows the measured (data points) and predicted (histogram) CCQE

Fisher variable distribution for CCQE candidate events (numuCCQElike>0.14). The filled

histogram shows the expected CCQE contribution.

the BackwardHitsFraction and VeryLateHitsFraction distributions. Despite this,

however, the predicted PID variable numuCCQElike, used to select CCQE candidate

events and shown in Fig. 7.13, match quite well the measured one.

7.4 CCQE Results

Having discussed the CCQE event selection description, performance, and valida-

tion, we can now make preliminary comparisons between the measured and predicted

MiniBooNE νµ CCQE event distributions of physics interest, based on the same data

sample described in Section 7.3.2. We proceed in increasing order of complexity, by

displaying hit-level distributions first, then showing distributions related to the prop-

erties of the final state muon, of the initial state neutrino, and of the full CCQE

interaction kinematics. All distributions shown are relatively normalized.
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Figure 7.14: Comparison between measured (data points) and predicted (histograms) hit-

level distributions for CCQE candidate events. Figure 7.14a) shows the average sub-event

time distribution, Fig. 7.14b) the main tank PMT hit multiplicity, Fig. 7.14c) the veto

PMT hit multiplicity.

Figure 7.14 shows data and Monte Carlo hit-level distributions for the first

subevent: average subevent time TTime, main tank hit multiplicity NTank, and veto

hit multiplicity NVeto. The hit multiplicities, roughly proportional to the visible en-

ergy in the detector, match reasonably well, with about half of the 1280 main PMTs

hit by light, and no veto activity, on average. The measured TTime distribution shows

the characteristic beam spill duration of 1.6 µs of the Booster extraction.

Figure 7.15 shows data and Monte Carlo distributions related to the recon-

structed properties of the final state muon: muon kinetic energy Tµ, cosine of the

muon direction with respect to the neutrino direction cos θµ, and radial position of

the mean light emission point of the muon track in equal-volume shells, (Rµ/500 cm)3.

The mean light emission point roughly corresponds to the mid-point along the muon

track. In MiniBooNE CCQE interactions, muons tend to be produced along the in-

coming neutrino direction, and with a kinetic energy of about 500 MeV. Moreover the

event selection criteria cause a marked departure from a uniform, flat in R3
µ, muon

spatial distribution in the tank; this departure is well-modeled by the Monte Carlo
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Figure 7.15: Comparison between measured (data points) and predicted (histograms) distri-

butions related to the final-state muon in CCQE candidate events. Figure 7.15a) shows the

reconstructed muon kinetic energy, Fig. 7.15b) the reconstructed muon track direction with

respect to the neutrino direction, Fig. 7.15c) the reconstructed, equal-volume radial position

distribution of the mean light emission point along the muon track.

simulation, as is the energy scale of the detector as given by Tµ. On the other hand,

the muon angular distribution appears flatter than what the neutrino event generator

and the Monte Carlo simulation of the detector predict. The dicrepancy between real

and simulated data in the cos θµ distribution near cos θµ ' 1 is discussed below, in

conjunction with the related Q2 distribution comparison.

Figure 7.16 shows the observed and predicted distributions in the reconstructed

neutrino energy EQE
ν and in the radial position of the neutrino interaction vertex in

equal-volume shells, (Rν/500 cm)3. Charged-current, quasi-elastic neutrino interac-

tions in MiniBooNE are characterized by typical energies of about 900 MeV. The

neutrino interaction vertex distribution is reasonably well modelled by the Monte

Carlo simulation, and shows a marked departure from uniformity due to the event

selection criteria, as for the corresponding muon distributions. The predicted recon-

structed neutrino energy distribution, assuming no oscillations, matches MiniBooNE

observations reasonably well. The neutrino energy comparison is discussed further in
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Figure 7.16: Comparison between measured (data points) and predicted (histograms) distri-

butions related to the initial-state neutrino in CCQE candidate events. Figure 7.16a) shows

the reconstructed neutrino energy, Fig. 7.16b) shows the reconstructed, equal-volume radial

position distribution of the neutrino interaction vertex..

Chapter 8, focusing on the muon neutrino disappearance analysis.

Finally, Fig. 7.17 compares observed and predicted distributions related to

the full event kinematics in MiniBooNE CCQE candidate events: Q2 of the four-

momentum transfer between the neutrino and the muon given by Eq. 7.7, the “in-

elasticity” ν ≡ EQE
ν − (Tµ + mµ) of the interaction, as well as the Q2 versus ν

scatter-plot. MiniBooNE CCQE interactions probe mostly the low Q2 (less than

about 1 GeV 2), low ν (less than about 0.5 GeV) region. The observed and predicted

Q2 versus ν relationships are in fairly good agreement with each other for all ν values,

and in reasonable agreement with the relationship Q2 = 2MNν, which is expected for

CCQE interactions that are not affected by reconstruction, nuclear Fermi momentum,

or binding energy effects, as discussed in Chapter 5. The observed deviations from

Q2 = 2MNν are well modeled by the Monte Carlo simulation.

In contrast, and as for the related forward part of the muon angular distribu-
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Figure 7.17: Comparison between measured (data points) and predicted (histograms) dis-

tributions related to the full-event kinematics in CCQE candidate events. Figure 7.17a)

shows the reconstructed Q2 distributions, Fig. 7.17b) the reconstructed ν distributions,

Figs. 7.17c) and d) the predicted and measured Q2 versus ν scatter plots, respectively. The

dashed line in Figs. 7.17c) and d) indicates the Q2 = 2MNν expectation.

tion cos θµ in Fig. 7.15, the data appears to show a rate-deficit in the lowest Q2

bins, below about 0.15 GeV 2, while the data and Monte Carlo ν distributions are in

better (but not perfect) agreement. The low Q2 region is expected to probe nuclear

effects in neutrino interactions, and the discrepancy between the observations and
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predictions may point to unsimulated physics in the description of neutrino-nucleus

cross-sections, even though no definitive statement can be made at this preliminary

stage. A similar low Q2 rate deficit in neutrino cross-section rates on a Carbon nuclear

target has been seen by the K2K experiment in their non-CCQE enriched neutrino

samples [149].



Chapter 8

The Muon Neutrino Disappearance

Analysis

The goal of the MiniBooNE νµ disappearance analysis is to constrain neutrino oscil-

lations of muon-type neutrinos into neutrinos that cannot be observed in the Mini-

BooNE detector, such as sterile or tau neutrinos. This search is motivated in Chapter

2, where the possibility for large νµ → νs oscillation probabilities in the neutrino mass

splitting range accessible to MiniBooNE is substantiated. Muon neutrino disappear-

ance can be constrained in MiniBooNE by comparing the overall number of observed

and predicted νµ interactions in the detector (normalization-only analysis), by look-

ing for neutrino energy-dependent distortions in the observed distributions compared

to the predicted ones (shape-only analysis), or by combining both comparisons (nor-

malization+shape analysis). In this Chapter, the MiniBooNE sensitivity to muon

neutrino disappearance via a shape-only analysis is discussed.

The aim of this Chapter is to piece the findings of the previous chapters together,

in order to study the MiniBooNE sensitivity to neutrino masses and mixings via muon

neutrino disappearance.

205
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8.1 The Oscillation Fitting Code

The goal of the oscillation fitting code is to determine the goodness-of-fit of the

oscillation and no-oscillation hypotheses, as well as computing the estimation (best-

fit and errors) of the neutrino oscillation parameters (sin2 2θµµ, ∆m2). The oscillation

fits discussed here assume that only one neutrino mass splitting may contribute to

the possible disappearance of MiniBooNE muon neutrinos; this assumption is valid,

for example, for the (3+1) sterile neutrino models discussed in Chapter 2.

Observations and Monte Carlo predictions for the yields of CCQE candidates as

a function of neutrino energy are compared using the following χ2 definition:

χ2(∆m2, sin2 2θµµ, k) =
∑
α,β

(N obs
α − kNpred

α )(M−1)αβ(N obs
β − kNpred

β ) (8.1)

where Npred
α = Npred

α (∆m2, sin2 2θµµ) is the predicted yield in the reconstructed neu-

trino energy bin α, N obs
α is the observed yield, Mαβ is the error matrix in bins of

reconstructed neutrino energy, k is an observation-to-prediction yield ratio parame-

ter. For energy shape-only fits as the ones discussed in this Chapter, the χ2 function

of Eq. 8.1 is minimized by varying the three fit parameters (∆m2, sin2 2θµµ, k), and

no normalization information is used.

For a better understanding of the construction of the error matrix appearing in

Eq. 8.1, and discussed in the next Section, it is useful to explicitly discuss how the

predicted yields Npred
α are obtained. The number of predicted events can be expressed

as:

Npred
α =

∑
i

Npot ·NCH2
· φi(

1

cm2 · pot
) · σi(

cm2

NCH2

) · εαi · 〈pνµ→ν 6µ(sin2 2θµµ, ∆m2)〉i

(8.2)

where Npot is the number of protons reaching the MiniBooNE beryllium target,

NCH2
is the number of CH2 molecules in the MiniBooNE detector 1, φi(

1
cm2·pot) is

the flux per unit area and per proton on target in the true neutrino energy bin i,

1The MiniBooNE detector is filled with mineral oil, which can be approximated as CH2 molecules.
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σi(
cm2

NCH2

) is the neutrino cross-section per CH2 molecule for a neutrino of energy Ei,

εαi is the probability of measuring a neutrino interaction with reconstructed energy

in bin α for a neutrino of true energy Ei interacting within the MiniBooNE detector,

given the CCQE selection described in Chapter 6, and 〈pνµ→ν 6µ(sin2 2θµµ, ∆m2)〉i is

the νµ disappearance probability averaged over the true neutrino energy bin i. The

εαi term can further be expressed as the product of the CCQE selection efficiency

parametrized in terms of true neutrino energy, times a migration matrix relating true

and reconstructed neutrino energies. The smearing in the distance between neutrino

production and neutrino detection, mostly due to the 50 m long decay region, is

taken into account in the oscillation probability term. The muon neutrino survival

probability term is equal to one for the no-oscillation prediction, and the predicted

yield is indicated by Npred
α,0 ≡ Npred

α (sin2 2θµµ = 0) in the following. Uncertainties

in Npot and NCH2
would enter in the analysis as normalization-only uncertainties,

and need not be taken into account for a shape-only analysis. Moreover, we assume

that 〈pνµ→ν 6µ(sin2 2θµµ, ∆m2)〉i is known with negligible errors, since the uncertainties

related to the simulation of the neutrino baseline smearing, and to the evaluation of

the oscillation integral over the neutrino energy bin, are small. The remaining three

multiplicative terms in Eq. 8.2 are separately related to flux, cross-section, and de-

tector response predictions. The systematic uncertainties affecting those predictions

are discussed in the next Section.

8.2 Systematic Errors Assumptions

The error matrix Mαβ appearing in Eq. 8.1 can be broken up into four independent er-

ror matrices: the one associated with flux systematic uncertainties (Mflux
αβ ), neutrino

cross-section uncertainties (Mxsec
αβ ), detection uncertainties (Mdet

αβ ), and statistical

uncertainties (Mstat
αβ ). The four error matrices are summed to provide the final error
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matrix appearing in the χ2 function defined in Eq. 8.1:

Mαβ = Mflux
αβ + Mxsec

αβ + Mdet
αβ + Mstat

αβ (8.3)

The statistical error matrix is straightforward to calculate given the observed

yields:

Mstat
αβ =

√
N obs

α δαβ (8.4)

The statistical error matrix is diagonal since the statistical error in a certain recon-

structed energy bin α is uncorrelated with the statistical error in a different bin β.

The general formalism used for constructing the systematic error matrices as-

sociated with flux, cross-section, and detection uncertainties is first presented. The

construction of these three error matrices is of particular importance, since the large

statistical sample of MiniBooNE CCQE candidate events already collected in Mini-

BooNE makes the νµ disappearance search a systematics-limited measurement. The

parameters describing flux, cross-section, and detection systematic uncertainties are

propagated into an uncertainty related to the MiniBooNE CCQE sample via the

following first-order approximation in a given systematic source variation Si:

Mαβ = Npred
α,0 Npred

β,0 DαiM
′
ijD

T
βj (8.5)

where α and β label bins in reconstructed neutrino energy, i and j now label a

systematic parameter that describes a systematic uncertainty associated with either

flux, cross-section, or detector response uncertainties, M ′
ij is the input error matrix in

the systematic parameters Si, Dαi is a matrix of first-derivatives that propagate the

uncertainty in the systematic parameter Si into an uncertainty on CCQE yields in bin

α. Generally, the propagation matrix D is computed via Monte Carlo simulations,

while the accuracy with which a systematic parameter Si is known is encoded in M ′
ij.

For energy shape-only fits, the propagation matrix D is constructed from the

fractions of events in a neutrino energy bin α obtained with and without varying the

systematic parameter Si by some small amount δSi:

Dαi =
1

n̄α

∂nα

∂Si

' 1

n̄α

n(S̄i + δSi)α − n̄α

δSi

(8.6)
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where nα ≡ Npred
α /Npred is the fraction of CCQE candidate events predicted for no

oscillations in the energy bin α (e.g.
∑

α nα ≡ 1).

Error matrices constructed in this way fully take into account correlations among

different energy bins. Implicit in the method described above to evaluate systematic

uncertainties are the following four assumptions: (1) the flux, cross-section, and de-

tection uncertainties are independent, and therefore uncorrelated; (2) the first-order

approximation used for propagating uncertainties holds approximately true given

the size of the systematic uncertainties δSi; (3) the propagation matrix D is cal-

culated with sufficient Monte Carlo statistics compared to the systematic variation:

δnα/n̄α � (Npred
α,0 )−1/2; (4) the uncertainties in the systematic parameters Si are

gaussian-distributed.

Given this formalism, we now summarize the systematic uncertainties considered

in the analysis, and how they affect the predicted energy shape of the MiniBooNE

CCQE sample.

8.2.1 Neutrino Flux

As mentioned in Chapter 4, we consider four sources of systematic uncertainties af-

fecting the muon neutrino flux predictions: uncertainties in the double-differential,

inclusive π+ and K+ production cross-sections in proton-beryllium interactions, in

the proton-beryllium total inelastic cross-section, and in the description of hadronic

interactions affecting the propagation of secondary particles produced in the Mini-

BooNE target. The double-differential, inclusive π+ (K+) production cross-sections

are parametrized in terms of eight (nine) Sanford-Wang parameters Si. The error

matrix M ′
ij in Eq. 8.5, describing how well these parameters are known, is obtained

from the combined fit to existing pion and kaon production data in the beam mo-

mentum and pion phase space of relevance to MiniBooNE, as discussed in Chapter

4. From those same fits, a 7% uncertainty in the total proton-beryllium inelastic
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cross-section is estimated. Finally, the uncertainty due to the description of hadronic

interactions of secondary particles produced in the target is estimated by varying the

physics model used to describe those processes in the beam Monte Carlo simulation.

The flux uncertainties given above are preliminary, and will be revised when HARP

data will become available.

The uncertainty in the CCQE yields due to the flux uncertainty is obtained in

two steps: first, an error matrix in the fractional flux prediction as a function of gener-

ated neutrino energy is obtained from the beam Monte Carlo simulation; second, this

flux prediction uncertainty is propagated into an uncertainty in the CCQE candidate

yields as a function of reconstructed neutrino energy by using the MiniBooNE NU-

ANCE event generator, the detector Monte Carlo simulation, and the reconstruction

software. This two-step approach is a good approximation to Eq. 8.5, and takes into

account correlations among different energy bins, and the energy dependence of the

neutrino cross-section and of the CCQE selection efficiency, given the similarity be-

tween generated and reconstructed neutrino energies, and given the sufficiently large

number of energy bins chosen (typically 30 bins between 0 and 3 GeV).

8.2.2 Neutrino Cross-sections

The effect on the predicted CCQE yields due to several sources of neutrino cross-

section uncertainties has been studied. Details on the neutrino cross-section param-

eters listed below are given in Chapter 5. Uncertainties associated with the physics

model responsible for the nuclear effects in neutrino cross-sections are accounted for

by assuming a 25 MeV uncertainty in the binding energy, and a 30 MeV/c uncer-

tainty in the Fermi momentum parametrizing the Fermi gas model. Form factor

uncertainties are considered by assigning a 10%, 20%, and 35% uncertainty in the ax-

ial mass describing quasi-elastic, single-π production, and multi-π production cross-

sections, respectively. A 100% uncertainty is assigned to the coherent π production
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contribution. Uncertainties in the final state interaction effects are accounted for by

assuming a 25% and 30% uncertainty in the π absorption and charge-exchange cross-

sections, respectively. Additional uncertainties in neutrino interactions proceeding

via ∆-resonances are estimated by assigning a 50% uncertainty to the ∆N → NN

rate, and a 4% uncertainty to the ∆-resonance width.

The cross-section uncertainties listed above change not only the overall neutrino

interaction rate prediction in the detector as a function of energy, but also the final

state of the neutrino interactions, therefore affecting the predicted behavior of the

reconstruction and of the CCQE event selection. For this reason, events generated

according to the assigned cross-section uncertainties are fully propagated through the

MiniBooNE analysis chain.

8.2.3 Detector Response

Uncertainties in the predicted neutrino energy reconstruction, and in the efficiency

and purity with which CCQE events are selected, depend upon how well the detector

response is simulated. A full account of the uncertainties associated with the detec-

tor response is not currently available, and it is a subject of intense study within the

experiment. As mentioned in Chapter 6, several processes are expected to affect light

production and propagation in the detector, and the task of assigning uncertainties

to the description of those processes in the detector simulation is not trivial.

In order to partially address this currently unknown, but potentially significant,

systematic effect on the CCQE sample predictions, the cosmic ray muon calibration

sample discussed in Chapter 7 is used, in order to estimate the neutrino energy re-

construction systematic uncertainty. The uncertainty described below is preliminary,

and will be revised when full estimates will become available. Moreover, no attempt

has been made here to estimate systematic effects on the CCQE event selection due

to the detector optical model uncertainties.
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The energy deposited in the detector by cosmic ray muons traversing the muon

tracker system, and stopping inside a scintillation cube in the detector, can be esti-

mated very accurately, given the known pathlength and energy deposition character-

istics of muons. For these muons of known energy, we study the potential differences

in the reconstructed muon energy in data and in Monte Carlo simulations, while the

overall absolute energy calibration applied to both samples that is assumed here is the

one obtained via the simulated data studies described in Chapter 7. The relationship

between the average, reconstructed and true (as obtained by the scintillation cubes)

muon energy is parametrized in terms of a second-order polynomial over the full cube

muons energy range 100 . Tµ (MeV) . 800, where the difference between the average

reconstructed muon energy in data and in Monte Carlo simulations is taken to be the

uncertainty for each data point. The (correlated) uncertainties in the second-order

polynomial parameters obtained by the fit allow one to obtain a crude estimate of

energy shift, energy scale, and energy non-linearity systematic effects. A negligible

energy shift, a δE/E ' 2% energy scale factor, and a δE(MeV)/E(MeV)2 ' 4 · 10−5

term describing energy non-linearities (corresponding to about 25 MeV for 800 MeV

muons, roughly consistent with the effect seen in Fig. 7.10) are assigned as systematic

uncertainties in the relative reconstructed energy response between real and simulated

data. This systematic uncertainty in the reconstructed muon energy is then propa-

gated into an uncertainty in the predicted neutrino energy reconstruction described

in Chapter 7, taking into account correlations among different neutrino energy bins

due to these systematic variations in energy.

8.3 Sensitivity to νµ → ν6µ Oscillations

Figure 8.1 shows the expected distribution of CCQE candidate events as a function of

neutrino energy, assuming no neutrino oscillations. The errors shown are the square

root of the diagonal elements of the flux, cross-section, and detector response sys-
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Figure 8.1: Predicted fraction of CCQE candidate events as a function of reconstructed

neutrino energy EQE
ν assuming no neutrino oscillations, including current estimates of sys-

tematic uncertainties. In panel a), the flux, cross-section, and detector response systematic

uncertainties are summed in quadrature; panels b), c), and d) show separately the flux,

cross-section, and detector response systematic uncertainty contributions, respectively.

tematic error matrices discussed in the previous Section. Both the cumulative (Fig.

8.1a) and individual (Figs. 8.1b, c, d) systematic errors are shown in the Figure.

While Figure 8.1 is useful for illustrating the size of the systematic uncertainties

affecting the expected CCQE neutrino energy distribution shape, it does not show

the effect of correlations among neutrino energy bins, and whether or not systematic

shifts can mimic an oscillation signal.

The sensitivity to neutrino oscillations is computed from Eq. 8.1, assuming that
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N obs
i = Npred

i,0 , that is assuming that MiniBooNE data match the no-oscillation pre-

dictions. The only input from MiniBooNE data in the fit is in choosing a statistical

sample that matches the actual number of CCQE candidate events collected, that

is 5.6 · 104 events. The sensitivity is computed using a raster scan method, and the

gaussian approximation is assumed. For each fixed ∆m2 value, the sin2 2θµµ values

that the experiment would be able to distinguish from the no-oscillation hypothesis

at the 90% confidence level are the ones for which sin2 2θµµ > sin2 2θµµ,max, where

∆χ2 = χ2(sin2 2θµµ,max, ∆m2)− χ2(sin2 2θµµ = 0) = 2.70.

In order to understand how the current estimates of the various uncertainties

on the predicted CCQE yields affect the MiniBooNE νµ disappearance sensitivity, we

show in Fig. 8.2 how the sources of systematic uncertainties affect the MiniBooNE

sensitivity separately. Five sensitivity curves are given in Fig. 8.2, corresponding to

no systematic uncertainties, only flux uncertainties, only cross-section uncertainties,

only detector response uncertainties, and flux+cross-section+detection uncertainties.

All curves include statistical errors corresponding to the collected CCQE data sample

of 5.6 · 104 events. It is apparent from Fig. 8.2 that the sensitivity to muon neutrino

disappearance at MiniBooNE is systematics-limited. Given the current uncertainty

estimates, the flux contribution is the dominant factor in limiting the sensitivity of

this measurement. Full detector response uncertainties, not included in Fig. 8.2, may

have a significant impact on the sensitivity curve.

If systematic errors were negligible, a MiniBooNE shape-only analysis would be

sensitive to muon neutrino disappearance in the 0.1 . ∆m2 (eV 2) . 30 range. This

range is determined by the L/E distribution of the experiment (L ' 0.5 km is the

distance between the neutrino production and detection locations), the CCQE sample

statistics, and the neutrino energy resolution.
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Figure 8.2: The thick solid curve shows the MiniBooNE sensitivity to νµ disappearance

given in Fig. 8.4, considering the current understanding of all systematic uncertainties.

The thin lines show sensitivity curves that would be obtained with no systematic uncer-

tainties (solid), only flux systematic uncertainties (dashed), only cross-section systematic

uncertainties (dot-dashed), and only detection systematic uncertainties (dotted). All sen-

sitivity curves include the statistical error of the data sample corresponding to 5.6 · 104

events.

8.4 Comparing the CCQE Results with Predic-

tions

In this Section, we compare the CCQE observations with the no-oscillation predictions

in terms of both the shape of the neutrino energy distribution, and in terms of the

overall neutrino normalization rate.
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Figure 8.3: Fraction of CCQE candidate events as a function of reconstructed neutrino

energy EQE
ν , shown on a linear (left panel) and logarithmic (right panel) scale. The points

show the observed distribution with statistical errors only. The light gray boxes show the

predicted distribution assuming no neutrino oscillations, including current estimates of flux,

cross-section, and detector response systematic uncertainties.

The observed neutrino energy distribution is compared with the shape predicted

assuming no neutrino oscillations in Fig. 8.3, on both a linear and a logarithmic

scale. Both distributions in the Figure are relatively normalized, and statistical and

preliminary systematic uncertainty estimates are included, as previously defined. The

shapes of the two curves are in qualitative agreement.

From Eq. 8.2, the overall CCQE rate normalization observed in the data can

also be compared to predictions, from the known number of nuclear targets in the

MiniBooNE detector and the measured number of protons on target. The measured

number of CCQE candidate events per proton on target is:

(
NCCQE
Npot

)obs ' 1.48 · 10−16
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where NCCQE ' 5.58·104 is the number of CCQE candidate events, Npot ' 3.76·1020

is the number of protons on target collected over the same time period 2. The num-

ber of protons on target is obtained from a beam detector device located immediately

upstream of the MiniBooNE target, and is expected to be accurate to within a few

percent level.

The corresponding predicted number is given by:

(
NCCQE
Npot

)pred = εprescale · εCCQE(
Nν

Npot
)pred ' 0.93 · 10−16

where (Nν/Npot)
pred ' 1.90 ·10−15 is the number of neutrino interactions of all types

per proton on target and within the full MiniBooNE detector volume of 610 cm in

radius, given by the flux and cross-section predictions, εprescale = 0.5 is a prescale

factor applied to the CCQE sample in this analysis, and εCCQE ' 0.0978 is the CCQE

event selection efficiency. The CCQE event selection efficiency is obtained from Monte

Carlo studies. In order to simulate the effect of cosmic ray muons on the selection

efficiency, the detector PMT hit distribution of the Monte Carlo sample was overlaid

with the detector activity recorded by random triggers in time, and reconstruction

and event selection algorithms are then applied to this merged data stream. Cosmic

rays coincident in time with neutrino-induced interactions are expected to reduce the

overall CCQE selection efficiency by about 15-20%, as can be deduced by comparing

the efficiency value quoted here with the one given in Chapter 7.

The same uncertainties affecting the energy shape of the flux and cross-section

predictions, assumed in the sensitivity curve of Fig. 8.2, can also be used to estimate

the overall rate normalization uncertainty. The results are given in Tab. 8.1. The

flux and cross-section uncertainties contribute about equally to the expected 17% nor-

malization rate uncertainty. This result is in contrast with the energy shape results

2Run numbers 8,235≤Run≤8,348 and 8,953≤Run≤9,138 are excluded from the proton counting

over the period 3,000≤Run≤10,493, since neutrino interactions occurring during those runs do not

pass the data quality requirements applied in this analysis.
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Category Type Normalization

uncertainty (%)

Flux π+ production 10.0

p-Be inelastic cross-section 3.7

K+ production 0.9

secondaries hadronic model 0.8

Flux total 10.8

Cross-section Fermi gas model 10.8

quasi-elastic axial mass 6.6

single-π axial mass 3.4

∆N → NN rate 1.8

coherent π production 1.4

other 1.0

Cross-section total 13.3

Flux + cross-section total 17.1

Table 8.1: Predicted contributions to the systematic uncertainty in the overall rate nor-

malization for the MiniBooNE CCQE candidate events sample over the energy range

0 < EQE
ν (GeV ) < 3, from various flux and cross-section uncertainties. No systematic

uncertainties on the CCQE event selection are included.

presented in the previous Section, and indicate that cross-section uncertainties tend

to contribute in a more fully correlated way among different neutrino energy bins,

compared to flux uncertainties. The dominant flux contribution is the π+ production

uncertainty in proton-beryllium interactions; the dominant cross-section contribu-

tions are the Fermi gas model and quasi-elastic axial mass uncertainties.

Overall, the 17% normalization uncertainty derived for the CCQE rate prediction

does not cover the '60% difference between observations and predictions, and cast

some doubt into the derivation of the CCQE predictions and their associated uncer-

tainties. For this reason, and for the lack of complete detector response systematic

uncertainties, neutrino oscillations cannot be constrained in a more quantitative way

at this stage.
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Figure 8.4: Comparison between the preliminary MiniBooNE sensitivity to muon neutrino

disappearance (dashed curve), with the the upper limits from the CCFR84 (at high ∆m2 and

CDHS (at lower ∆m2) experiments, shown by solid curves. The MiniBooNE sensitivity

assumes 5.6 · 104 CCQE candidate events, together with flux, cross-section, and detector

response systematic uncertainties discussed in the text. All curves assume a 90% confidence

level.

8.5 Toward Muon Neutrino Disappearance Results

Figure 8.4 shows the 90% confidence level MiniBooNE sensitivity to νµ disappear-

ance assuming the current understanding of systematic uncertainties, by looking for

energy-dependent distortions in the observed distribution of CCQE events compared

to the no-oscillation predictions, and without using the overall rate normalization in-

formation. Also shown in Fig. 8.4 are the existing upper limits on νµ disappearance

from past short-baseline oscillation experiments discussed in Chapter 2: CCFR84 and
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CDHS. The preliminary expectation for the MiniBooNE sensitivity to muon neutrino

disappearance is similar to the oscillation sensitivity achieved by previous experi-

ments.

The preliminary MiniBooNE sensitivity curve in Fig. 8.4 is expected to be a

reasonable representation of the final sensitivity of the experiment, under the as-

sumptions that: (1) the current observed-to-predicted rate normalization ratio dis-

crepancy will be proven to be due to a currently unsimulated effect that is independent

of neutrino energy and neutrino interaction type, (2) the detector response system-

atic uncertainties affecting the CCQE event selection will be shown to be negligible

compared to the uncertainties presently considered. Both statements still need to be

proven. Concerning the overall rate normalization, a careful scrutiny of the neutrino

rate predictions is underway, and results from all MiniBooNE neutrino data samples

are being compared. Concerning the detector response uncertainties, table-top mea-

surements on light production and propagation in mineral oil are being used as inputs

to the detector response expectations and uncertainty estimates, and the resulting de-

tector optical model description is being confronted with the MiniBooNE calibration

samples. Moreover, results from the HARP hadron production experiment may allow

to reduce the flux systematic uncertainties, and therefore improve the MiniBooNE

sensitivity to muon neutrino disappearance.

Under the sensitivity assumptions presented in Fig. 8.4, the MiniBooNE exper-

iment is expected to provide a significant contribution toward the search for sterile

neutrinos, and may be able to address (either alone, or in combination with the

CCFR84 and CDHS results) oscillation parameter regions that include the range fa-

vored by sterile neutrino models (see Chapter 2).

As an example, in Figure 8.5 we show the expected constraints in the oscillation

parameter space (sin2 2θµµ, ∆m2) that would be obtained at MiniBooNE if neutrino

oscillations were present, and specified by the parameters (sin2 θµµ = 0.3, ∆m2 =

0.92 eV 2). Those parameters are chosen because currently allowed by combined fits
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Figure 8.5: MiniBooNE sensitivity to neutrino mass and mixing parameters for a simulated

oscillation signal currently allowed in (3+1) sterile neutrino models, (sin2 θµµ = 0.3,∆m2 =

0.92 eV 2). The allowed regions shown are at 68% and 90% confidence level, and assumes

preliminary systematic uncertainties and a total data sample of 5.6 · 104 CCQE candidate

events.

of (3+1) sterile neutrino models, as discussed in Chapter 2. Similarly, and also as

discussed in Chapter 2, MiniBooNE is expected to have some sensitivity, and possi-

bly to measure, the neutrino mass and mixing parameters presently allowed by (3+2)

sterile neutrino models.
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Conclusions

In recent years, neutrino experiments have provided convincing evidence that neu-

trinos are massive particles, and that oscillations among the three distinct neutrino

flavors participating in the weak interactions occur. Furthermore, the LSND evidence

for neutrino oscillations may point to the existence of light sterile neutrino species,

that is neutral leptons with no standard weak couplings, and to active-to-sterile neu-

trino oscillations.

The phenomenology of sterile neutrino models explaining the LSND result is ex-

tensively studied, and motivates the search for sterile neutrinos with the Fermilab

Booster Neutrino Experiment (MiniBooNE).

This thesis describes the necessary ingredients for a sterile neutrino search via

the disappearance of muon neutrinos, possibly due to muon-to-sterile neutrino os-

cillations. This effect may be observable as an energy-dependent distortion in the

predicted unoscillated muon neutrino energy spectrum. In particular, the work done

to estimate the muon neutrino flux predictions at the MiniBooNE detector, and the

selection and characterization of charged-current, quasi-elastic interactions of muon

neutrinos (νµn → µ−p), is emphasized.

The uncertainties affecting the experiment’s sensitivity to muon neutrino disap-

pearance are reviewed, and reveal the possibility to explore unchartered territory in

the neutrino mass and mixing parameter space that may be responsible for active-

to-sterile neutrino oscillations. Preliminary comparisons between observations and

predictions are presented, as a first step toward a muon neutrino disappearance re-

sult.
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